抗Aβ人源性抗體的制備
[Abstract]:Alzheimer's disease (AD) is a degenerative disease of the central nervous system that occurs frequently in the elderly. Its main clinical features are memory loss, cognitive and motor dysfunction. At present, the pathogenesis of AD is not very clear. Among them, amyloid protein (Abeta) is polymerized in the form of soluble monomer under normal physiological conditions. The accumulation of amyloid proteins with neurocytotoxicity is considered to be a key event in the pathogenesis of AD. Studies have shown that Abeta is a common pathway of various factors causing Alzheimer's disease and a key factor in the pathogenesis and development of AD. Therefore, Abeta is generally regarded as an effective target molecule for the treatment of AD. The beta-amyloid precursor protein (APP) is formed by the beta-metabolic pathway. It is generally composed of 39-43 amino acids and has a secondary structure of a beta-folded lamella. The molecule as a whole is hydrophobic, easy to aggregate and form insoluble deposits. In 1999, Schenk et al. first used Abeta 1-42 to host AD model mice. A breakthrough has been made in animal immunity. Since then, reports have confirmed that A-beta peptide and its antibody can be used in immunotherapy of AD and can achieve good therapeutic effect. Betabloc (AN1792), a vaccine of A-beta 1-42 developed by Elan Company, has been found to be effective in eliciting immune response and producing amyloid A-beta after phase I clinical trials. Sedimentation-bound antibodies can effectively activate microglia to clear plaques formed by amyloid A beta deposition and significantly improve cognitive function in patients. Unfortunately, during phase II clinical trials, some patients experienced inflammation in the brain and the tests were terminated. Meanwhile, passive immunotherapy for AD has been achieved. Great progress has been made. Studies have shown that anti-A-beta-N-terminal antibodies can effectively improve AD-related symptoms without triggering an immune response in Th1 cells. We hope that a large number of human phage antibody libraries will be screened by bacterial screening combined with solid phase screening to obtain specific antibodies, and lay a foundation for the development of therapeutic antibodies against AD.
Firstly, in order to screen antibodies against Abeta 1-12 and provide epitope peptides for preliminary epitope identification of specific antibodies, we divided Abeta 1-42 into four epitope peptides: Abeta 1-12, Abeta 12-23, Abeta 21-32 and Abeta 31-42 according to the molecular structure of Abeta 1-42 and the characteristics of bacterial flagella display system. The recombinant plasmids expressing four peptides fused with bacterial flagellin were expressed on E.coli GI826 flagella by bacterial flagella surface display system. SDS-PAGE electrophoresis, Western blot and immunofluorescence assay showed that the four peptides fused with flagellin and were successfully displayed on E.coli GI. The 826 surface.
Secondly, high throughput screening of human antibodies against A-beta-42 and its N-terminal (A-beta-12, A-beta-15) has been carried out. At present, most of the antibodies used in AD passive immunity research institute are mouse-derived antibodies, which limit their application in human body. The antibodies obtained from human antibody library avoid this problem and can be directly applied without humanization modification. In this study, we used deduction screening for A-beta-12, solid-phase screening for A-beta-42, solid-phase binding screening for A-beta-12, and solid-phase screening for A-beta-15 to screen a large-capacity phage single-chain antibody library with a capacity of 1.35 *1010. During the screening process, about 2000 clones were selected randomly, of which the positive rate of bacterial screening clones was low, and the positive rate of solid-phase screening clones could reach 50%. However, because solid-phase screening was aimed at the full-length screening of A-beta 1-42, the specific antibodies could be obtained with any region of A-beta 1-42. Domain binding. In order to screen high-quality antibodies against Abeta 1-12, we used the method of deduction screening for Abeta 1-12 and then solid-phase screening for Abeta 1-12. The positive rate of bacterial solid-phase binding screening for Abeta 1-12 was up to 40%. At the same time, we also carried out solid-phase screening for Abeta 1-15, but clone positive. Finally, we obtained a specific phage antibody G10 in the process of bacterial screening. Two specific phage antibodies 18,26 were obtained during the solid phase screening of A-beta 1-42. Two specific phage antibodies H9 and B5 were obtained during the solid phase screening of A-beta 1-15. A specific antibody 87.18 of which is the same as H9. This result proves that our scheme is reliable and effective.
Thirdly, we transformed the specific single-chain antibody into full-antibody form and identified the specificity of the instantaneous expression of the whole antibody. In order to obtain a more stable form of antibody, we modified the full-antibody form of the five strains of phage-specific single-chain antibodies and the five strains of antibodies were fine in 293-F. Results No. 18 and No. 87 antibodies were not expressed, and G10, 26 and B5 were expressed. Specificity identification showed that G10 lost its binding ability to AB1-42, 26 and B5 could specifically bind to AB1-42. Finally, we obtained two specific antibodies, 26 and B5.
Finally, we identified the epitopes of 26 and B5, and detected the affinity of the antibodies binding to the N terminal of A beta (A beta 1-12, A beta 1-15). The epitopes of 26 and B5 were identified by the A beta fragment peptides displayed on the flagella surface of bacteria. The results showed that 26 specifically binds to A beta 31-42 and B5 specifically binds to A beta 1-12. The antigenic epitope of 26 was located at A beta 31-42 and the antigenic epitope of B5 was located at A beta 1-12. Non-competitive ELISA showed that the affinity of B5 was KD=1.4 *10-8mol/L.
To sum up, we have constructed a flagella display system for the peptide fragments of Abeta 1-42, which lays a foundation for further study on the epitope of Abeta. Two specific single chain antibodies 26 and B5 were obtained from a large-scale phage antibody library by high-throughput screening of antibody library, and epitopes were carried out at the whole antibody level. The results showed that the epitope of 26 was located in A beta 31-42 and the epitope of B5 was located in A beta 1-12. The affinity of B5 antibody was 1.4 *10-8 mol/L, which laid a foundation for further study of therapeutic antibody of AD.
【學位授予單位】:中國人民解放軍軍事醫(yī)學科學院
【學位級別】:碩士
【學位授予年份】:2010
【分類號】:R392
【相似文獻】
相關期刊論文 前10條
1 張娟;張君;余曉林;吳倩;蔣飛龍;黃長武;李興祿;黃愛龍;鄭建;;特異性O1群稻葉型霍亂弧菌單克隆抗體的制備、篩選及識別抗原表位的分析[J];第三軍醫(yī)大學學報;2008年15期
2 王佑春,李河民,胡宗漢;針對HBsAg α決定簇不同表位單克隆抗體的篩選及某些特性的研究[J];細胞與分子免疫學雜志;1992年01期
3 黃啟華,吳子松,高鵬,張桂威,邱東川,,周國興,山建忠,蔡興平;識別血吸蟲成蟲多肽表位單克隆抗體細胞株的建立及用于檢測循環(huán)抗原的研究[J];中國人獸共患病雜志;1996年05期
4 馬靖;含B細胞表位的重組抗體能誘發(fā)構象特異性抗體應答[J];國外醫(yī)學.預防.診斷.治療用生物制品分冊;1996年06期
5 閉蘭;對HIV疫苗應答與對HIV應答的區(qū)別[J];國外醫(yī)學.預防.診斷.治療用生物制品分冊;1998年03期
6 范寶劍;人體對丙型肝炎病毒表位免疫應答的分析[英][J];國外醫(yī)學.預防.診斷.治療用生物制品分冊;1999年03期
7 黃峙,楊紅宇,向軍儉;應用噬菌體展示技術研究過敏原表位的新進展[J];現代免疫學;2004年04期
8 韋三華;尹文;雷迎峰;胡興斌;楊敬;呂欣;孫夢寧;徐志凱;;穩(wěn)定表達丙型肝炎病毒復合多表位基因P815細胞克隆的建立[J];第四軍醫(yī)大學學報;2006年01期
9 樊建勇;楊慧蘭;關蕾;王穎;仕瑤慧;;單純皰疹病毒2 gD蛋白T細胞表位區(qū)的預測及克隆[J];中國皮膚性病學雜志;2007年06期
10 熊君輝;郭清順;葛勝祥;顧穎;陳毅歆;苗季;杜海蓮;史維國;張軍;夏寧邵;;抗戊型肝炎病毒單克隆抗體識別表位的初步研究[J];病毒學報;2008年02期
相關會議論文 前10條
1 潘志明;張曉明;焦新安;Richard Lo-Man;Claude Leclerc;劉秀梵;;重組減毒細菌運送CD8~+ T細胞表位的效應分析[A];全國人畜共患病學術研討會論文集[C];2006年
2 吳靜波;翁云層;丘金浪;李榮;黎誠耀;王文敬;;布魯氏菌弱毒疫苗株M5-90 BP26和OMP31蛋白T細胞表位的鑒定[A];中國畜牧獸醫(yī)學會獸醫(yī)公共衛(wèi)生學分會第三次學術研討會論文集[C];2012年
3 王書峰;;免疫表位數據庫的現狀及新型表位數據庫的構思[A];第六屆全國免疫學學術大會論文集[C];2008年
4 張小俊;孟頌東;;HLA-A24和-A33限制性B、C型乙肝病毒核心蛋白T細胞表位的鑒定與評價[A];2010年中國科學院微生物研究所博士后學術年會暨第二屆博誼論壇論文摘要集[C];2011年
5 余劍琴;鄭飛云;徐云升;歐榮英;張乾;;HPV18 E7抗原HLA-DRB1*0301限制性Th表位的鑒定[A];2011年浙江省婦產科學學術年會暨“婦產科常見疾病的臨床研究新進展”學習班論文匯編[C];2011年
6 吳德銘;劉鎮(zhèn)明;黃毓茂;羅滿林;;抗PRV gE主要抗原表位單克隆抗體的研制[A];豬的重要傳染病防治研究新成果——中國畜牧獸醫(yī)學會家畜傳染病學分會第五屆理事會第二次全體會議暨防檢疫專業(yè)委員會第7次學術交流會論文集[C];2002年
7 杜以軍;姜平;楊曉瑋;湯景元;李玉峰;李永東;;豬口蹄疫病毒多抗原表位重組腺病毒的構建與鑒定[A];第六屆全國會員代表大學暨第11次學術研討會論文集(上)[C];2005年
8 杜玲;王惠菊;楊建民;高寒;周永列;陶厚權;;Th線性肽對人肝素酶B細胞表位多抗原肽的免疫增強作用[A];首屆浙江省消化病學術大會論文匯編[C];2008年
9 胡雪梅;張兆松;吳海瑋;李春林;蘇川季;王詩寧;王勇;吳觀陵;;日本血吸蟲線粒體相關蛋白的表位篩選及其免疫保護性研究[A];中國動物學會第八次全國寄生蟲學學術討論會論文摘要匯編[C];2001年
10 張艷;鄭龍;宋淑霞;魏林;;對攜帶HCC表位的HBc病毒樣顆粒負載的DC疫苗的免疫評價[A];河北省免疫學會第六次免疫學大會資料匯編[C];2010年
相關重要報紙文章 前10條
1 新紋;非典病毒并不“強”?[N];醫(yī)藥經濟報;2004年
2 朱娟邋何勇;點滴匯就“明星”風采[N];中國電力報;2007年
3 ;買房子——把好最后一關[N];中華建筑報;2002年
4 ;何謂 移表 改類[N];西南電力報;2002年
5 張?zhí)烊A;我旅美學者篩出抗SARS單抗[N];中國醫(yī)藥報;2004年
6 ;居民用電有講究[N];西藏日報;2000年
7 曾耀英;HIV疫苗 研究思路[N];中國中醫(yī)藥報;2006年
8 束洪福;丙肝疫苗研究有新進展[N];科技日報;2008年
9 河北 吳新年;“自動編號”巧改良[N];電腦報;2004年
10 張中橋;胃癌免疫治療研究有新進展[N];中國醫(yī)藥報;2002年
相關博士學位論文 前10條
1 王雅英;北京地區(qū)人博卡病毒流行率調查及表位研究[D];北京協和醫(yī)學院;2011年
2 李光富;日本血吸蟲復合表位及其在CpG ODN協同下誘導的Th1應答對小鼠的免疫保護作用[D];南京醫(yī)科大學;2004年
3 林治華;QSAR分析結合實驗方法用于T細胞表位快速篩選的研究[D];第三軍醫(yī)大學;2003年
4 李長嶺;PfCP-2.9瘧疾疫苗候選抗原系列突變體的構建及其表位和免疫學分析[D];第二軍醫(yī)大學;2010年
5 楊玲;乙型肝炎病毒變異與慢加急性肝衰竭發(fā)病關系的研究[D];南方醫(yī)科大學;2010年
6 高軍;丙型肝炎病毒多表位抗原的基因合成與免疫原性研究[D];第二軍醫(yī)大學;2004年
7 殷瑛;以乙型肝炎病毒核心蛋白為載體的新型疫苗研究[D];中國人民解放軍軍事醫(yī)學科學院;2010年
8 沈柱;特異性置換肽下調銀屑病自身反應性T細胞功能的研究[D];第四軍醫(yī)大學;2005年
9 陳安;一個新的HBcAg之H-2K~d限制性表位的鑒定及其功能特性研究[D];第三軍醫(yī)大學;2004年
10 潘志明;重組減毒細菌運送CD8~+T細胞表位的機理及攜帶新城疫病毒DNA 疫苗鼠傷寒沙門氏菌的免疫生物學特性研究[D];揚州大學;2004年
相關碩士學位論文 前10條
1 孫超;抗Aβ人源性抗體的制備[D];中國人民解放軍軍事醫(yī)學科學院;2010年
2 趙r嚺
本文編號:2209905
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2209905.html