Rpf蛋白結(jié)構(gòu)域的生物學(xué)及免疫學(xué)特性的初步研究
[Abstract]:Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (MTB). It is also one of the most important pathogenic and fatal factors in the world today. According to WHO, approximately 1/3 population in the world is in the state of MTB infection, and the number of TB patients in China is living in the world. The number of second people has reached 400 million. Only 10% of these people may eventually develop into active TB, and the overwhelming majority of them are recessive. The infected bacteria exist in the form of dormant bacteria. The drug resistance of this kind of dormant bacteria is very strong, it can exist in the body for a long time, and the conventional method is difficult to separate and culture. Bacille Calmette-Guerin (BCG) is M The TB strain is the only vaccine used for the prevention of TB, but it is ineffective for the recessive infection, and has the defects of short protection period and weak immune response. Therefore, the study of the pathogenesis and immune mechanism of MTB, the development of the more effective diagnosis, the treatment and prevention of MTB infection, especially the new methods, new measures and new vaccines against the recessive infection Significance.
In recent years, it is found that in the recovery process of MTB dormant bacteria, 5 kinds of Resuscitation promoting factor (Rpf) secreted by MTB have played an important role, which are Rv0867c (RpfA), Rv1009 (RpfB), Rv1884c (RpfC). Homology analysis found that Rpf exists in a variety of Gram-positive bacteria rich in G+C, and their gene encoded proteins have Rpf like domains. In the study, the domain of Rpf protein has a consistent biological characteristic with the complete Rpf protein. The study of the Rpf family also found that the Rpf like protein is not only related to the proliferation of bacteria, but also may be The target antigen identified by the host immune system.
In this study, we cloned, expressed and purified Rpf protein, Rpf domain protein and RpfB domain protein, respectively, and prepared a monoclonal antibody (monoclonal antibody, MAb) against the Rpf domain and anti RpfB domain of Micrococcus gonorrhoeae, and studied the biological function of Rpf, Rpf domain and RpfB domain protein of rattan Micrococcus. And immunological characteristics. Evaluate its application for MTB isolation and culture additives, the establishment of related antigen detection methods and the possibility of developing new TB vaccines. Objective: to express and purify Rpf, Rpf domain and RpfB domain protein of Micrococcus lutea, to prepare Rpf domain of Micrococcus Garcinia and to resist MAb in RpfB domain by the expression system of Escherichia coli. Further study of its biological and immunological characteristics.
Experimental methods and results:
1. clones of Rpf, Rpf domain and RpfB domain of Micrococcus luptois, expression and purification were amplified by PCR method from the genome of gonorrhoeae micrococcus and MTB H37Rv respectively, which were respectively amplified from Rpf, Rpf domain and RpfB domain target gene fragment respectively, and were cloned into pUC-19 vector and sequenced respectively, and the results were reported to GenBank reports. The target genes were cloned in human pProEX HTb expression vector respectively. After the enzyme digestion was identified, the target protein was induced by IPTG to express the target protein in E.coli. The 3 target proteins expressed by SDS-PAGE were in accordance with the expected molecular weight. The Western-blot analysis showed that the 3 fusion 6 * His target proteins could react with the anti 6 x His MAb specific.3. The target proteins were expressed in inclusion bodies, and 3 target proteins were purified by affinity chromatography under the condition of denaturation.
2. biological functions of Rpf, Rpf domain and RpfB domain of Micrococcus lutea
2.1 preparation and identification of RpfB domain MAb against Rpf domain of Micrococcus lutea
BALB/c mice were immunized with Rpf domain protein of Micrococcus Garcinia Micrococcus, and 3 hybridoma cell lines, which could secrete the Rpf domain MAb of anti Micrococcus, were obtained, named F3D10, G10D5, G6C8 respectively. F3D10, G10D5 were IgG1 subclasses and G6C8 were IgM subclasses. In white immunized BALB/c mice, 3 hybridoma cell lines, named D3A5, B8G11, A9C8, were named D3A5, B8G11, A9C8, which could stabilize the secretory anti RpfB domain MAb, which were D3A5, B8G11 as IgG1 subclass, A9C8 for IgM subclass, and its relative affinity was A9C8D3A5B8G11.
The pcDNA3.1 (-) -Rpf domain and the pcDNA3.1 (-) -RpfB domain eukaryotic expression vector were respectively constructed and transfected to COS-7 cells. The indirect immunofluorescence assay showed that the Rpf domain proteins and RpfB domain proteins were expressed in COS-7 cells, and the specificity of MAb was indirectly verified.
2.2 cross experiments against the Rpf domain and the anti RpfB domain MAb of the micrococcus aureus. Rpf, Rpf domain, RpfB domain, RpfA (the purified MTB RpfA protein in our laboratory, the plasmid is a foreign Mike Young Professor) and the two kinds of H37Ra as antigen and preparation, respectively. The results show that the two kinds of anti structural domains are all available. The above protein reacted with the H37Ra strain.
2.3 the recovery and growth of Micrococcus lutea Rpf, Rpf domain and RpfB domain protein to Micrococcus lutea and MTB H37Ra dormancy bacteria
After proper dilution of the dormant bacteria of Micrococcus Garcinia micrococcus and MTB H37Ra, they were randomly divided into 3 groups. Each group added the purified protein with different dilution concentration and the corresponding anti structural domain MAb to measure the OD600 value at different time points and draw the growth curve. The results showed that when the concentration of Rpf and Rpf in the Rpf and Rpf domains of the micrococcus Garcinia were 100pmol/L, the rattan was stimulated. The effect of Micrococcus aureus resuscitation and growth was obvious. When the concentration of Rpf was 10pmol/L and the concentration of Rpf domain was 100pmol/L, MTB H37Ra was stimulated to resuscitation and growth, and the stimulation was inhibited obviously after the MAb Rpf domain MAb was added to 1:600. When RpfB domain concentration was 1000pmol/L, the stimulus was stimulated. The effect of Micrococcus Luba Micrococcus resuscitation and growth was obvious. When the concentration of RpfB domain was 500pmol/L, the stimulation of MTB H37Ra resuscitation and growth was obvious, and the stimulation was obviously inhibited after 1:1000's RpfB domain MAb was added.
Immunological characteristics of Rpf, Rpf domain and RpfB domain of Micrococcus lutea 3.
Using the subcutaneous embedding method, Rpf, Rpf domain and RpfB domain protein were dripped to the micromass of the nitrocellulose membrane respectively. The mice were immunized for 3 times, each interval was 2 weeks, at the same time, the BCG immunization group and the normal saline control group were set up. The average titer of the specific antibody in the serum of the immune mice was detected by ELISA. The results showed: rattan yellow micro The titer of the highest antibody in the Rpf protein immunization group was 1:12800, the highest antibody titer of the Rpf domain protein immune group was 1:4800, and the highest antibody titer of the RpfB domain protein immune group was 1:6400..
In order to detect the cellular immune response caused by protein immunization in mice, the spleen lymphocytes of mice were separated after the last two weeks of immunization. The lymphocyte proliferation reaction was detected by MTT method after PPD stimulation in vitro. The stimulation index of Rpf, Rpf domain and RpfB domain protein in mice were 2.86 + 0.12,2 respectively. .10 + 0.09,2.40 + 0.11 was significantly higher than that in the normal saline control group (0.90 + 0.21) (P0.01), but less than the BCG immunization group (3.50 + 0.23) (P0.05). The average level of IFN- gamma, IL-10 and IL-12 induced by Rpf protein of Micrococcus Lutus Micrococcus were 1528 + 36ng/L, 485 + and 302 + 14ng. The average level of -12 was 1126 + 36ng/L, 368 + 13ng/L and 289 + 14ng/L, and IFN- gamma induced by RpfB domain protein, the average level of IL-10 and IL-12 was 1432 + 30ng/L, 503 + 11ng/L and 311 + 11ng/L, and 2022 +, 578 and 400 +, respectively, induced by BCG immunization group, respectively, and 578 + and 400 +. The levels of IFN- gamma, IL-10 and IL-12 were 256 + 6ng/L, 76 + 3ng/L and 56 + 4ng/L., respectively. The results showed that the level of cytokines induced by 3 protein immunization mice was significantly higher than that of normal saline control group (P0.01), but it was not as good as BCG immune group (P0.05).
In the fourth week after immunization, 105CFU MTB H37Rv strains were used to attack the mice in the above immunization groups and count the number of spleen bacterial loads. Compared with the normal saline control group, the Rpf, Rpf domain and RpfB domain protein immunization group had significant inhibitory effect on the proliferation of MTB in the spleen after the attack of H37Rv strain (the difference value). They were 1.89 log10,1.61 log10 and 1.78 log10) (P0.05), but not as BCG immunization group (2.83 log10) (P0.05).
Conclusion: the Rpf, Rpf domain and RpfB domain proteins of Micrococcus luberus all have the effect on promoting the recovery and growth of Micrococcus lubera and MTB dormant bacteria, which are expected to be used in the isolation and culture of clinical specimens, promote the recovery and growth of MTB dormant bacteria and improve the detection rate of the recessive infection, and the MAb of the two domains is not only obvious. The inhibition of the recovery and growth of the 3 proteins and the identification of a variety of Rpf proteins and their domains can be specifically identified. According to this, it is possible to establish a detection method for MTB related antigens; the specific immune responses induced by the 3 kinds of protein immunized animals have certain protective effects on the attack of MTB strains, and they may be used for the new epidemic of TB. The development of the seedlings.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2008
【分類號(hào)】:R392
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪圣強(qiáng);王柯;裴豪;;主動(dòng)外排系統(tǒng)與結(jié)核分枝桿菌耐藥[J];中國醫(yī)學(xué)工程;2011年07期
2 王海全;;64例塵肺結(jié)核痰結(jié)核分枝桿菌培養(yǎng)藥敏結(jié)果分析[J];中國醫(yī)藥指南;2011年21期
3 董海燕;張建中;萬康林;;結(jié)核分枝桿菌毒力相關(guān)因子研究進(jìn)展[J];醫(yī)學(xué)研究雜志;2011年06期
4 黃志強(qiáng);張日東;吳智龍;陳世浩;;新型改良羅氏培養(yǎng)基與羅氏酸基檢測(cè)結(jié)核分枝桿菌比較[J];廣東醫(yī)學(xué);2011年09期
5 呂中全;張明新;張慧;;熒光定量聚合酶鏈反應(yīng)檢測(cè)結(jié)核分枝桿菌的價(jià)值[J];新鄉(xiāng)醫(yī)學(xué)院學(xué)報(bào);2011年04期
6 陳士東;;296例結(jié)核性腦膜炎臨床分析[J];醫(yī)學(xué)理論與實(shí)踐;2011年13期
7 金法祥;王華鈞;孫小軍;;DNA環(huán)介導(dǎo)恒溫?cái)U(kuò)增試驗(yàn)檢測(cè)結(jié)核分枝桿菌的研究[J];中華醫(yī)院感染學(xué)雜志;2011年12期
8 廖傳玉;黃正谷;陳天剛;李同心;萬東勇;饒霞;徐艷;侯毅;鐘敏;嚴(yán)嘵峰;;2004~2009年我中心結(jié)核分枝桿菌臨床株耐藥趨勢(shì)[J];臨床肺科雜志;2011年08期
9 張偉錚;黃彬;林冬玲;鄂順梅;薛新娜;曾建明;陳茶;;結(jié)核分枝桿菌自身淬滅探針熒光定量PCR檢測(cè)方法的建立[J];中國熱帶醫(yī)學(xué);2011年06期
10 王瑞博;井申榮;;結(jié)核分枝桿菌分泌蛋白TB10.4的功能和應(yīng)用[J];生命的化學(xué);2011年04期
相關(guān)會(huì)議論文 前10條
1 戴廣明;曹以誠;杜正平;陳洵;黃曙海;逄宇;周楊;黃海榮;趙雁林;;結(jié)核分枝桿菌環(huán)介導(dǎo)恒溫?cái)U(kuò)增(LAMP)快速檢測(cè)方法的構(gòu)建[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2010年學(xué)術(shù)年會(huì)論文匯編[C];2010年
2 許優(yōu);孫惠平;張?jiān)鲑t;劉莉娜;;關(guān)于結(jié)核分枝桿菌定量方法的研究[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2006年學(xué)術(shù)會(huì)議論文匯編[C];2006年
3 劉毅;李衛(wèi)民;田苗;孫照剛;李傳友;周輝;張治國;高鐵杰;高峰;;快速篩選定義北京基因型結(jié)核分枝桿菌的新方法[A];2007年中國防癆協(xié)會(huì)全國學(xué)術(shù)會(huì)議論文集[C];2007年
4 張?jiān)滦?辛毅;馬郁芳;;結(jié)核分枝桿菌RmlB的表達(dá)、純化及酶促反應(yīng)動(dòng)力學(xué)研究[A];2008年全國糖生物學(xué)學(xué)術(shù)會(huì)議論文摘要[C];2008年
5 劉焰;劉勝武;談蓉;馬立新;劉君炎;;結(jié)核分枝桿菌Ag85B與ESAT-6雙順反子重組腺表達(dá)載體的構(gòu)建[A];第六屆全國免疫學(xué)學(xué)術(shù)大會(huì)論文集[C];2008年
6 吳園;鐘敏;王易偉;鐘靜;胡頻頻;毛旭虎;;Rv0341用于診斷依賴?yán)F浇Y(jié)核分枝桿菌結(jié)核病的研究概況[A];中國防癆協(xié)會(huì)臨床委員會(huì)、中國防癆協(xié)會(huì)基礎(chǔ)委員會(huì)學(xué)術(shù)研討會(huì)論文集[C];2008年
7 張旭霞;張海青;李傳友;田苗;趙冰;李衛(wèi)民;張健源;印云青;焦揚(yáng);端木宏謹(jǐn);;結(jié)核分枝桿菌黏附素HBHA防治結(jié)核病的動(dòng)物實(shí)驗(yàn)研究[A];2005年中國防癆協(xié)會(huì)全國學(xué)術(shù)會(huì)議論文集[C];2005年
8 陳曦;張宗德;劉忠泉;賈紅彥;邢愛英;古書香;;結(jié)核分枝桿菌rv3873、rv3879c基因原核表達(dá)載體的構(gòu)建和表達(dá)[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2006年學(xué)術(shù)會(huì)議論文匯編[C];2006年
9 周慶;方中飛;沈小英;宋冰;方孝美;;臨床分離結(jié)核分枝桿菌的耐藥性分析[A];2006年浙江省檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2006年
10 陳濤;周琳;周杰;江勇;周志剛;彭建明;文力;彭東東;何超文;鐘球;;環(huán)介導(dǎo)等溫?cái)U(kuò)增法快速檢測(cè)結(jié)核分枝桿菌的方法建立與臨床應(yīng)用評(píng)估[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2011年學(xué)術(shù)會(huì)議論文匯編[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 韓曉玲 通訊員 范敬群 金安江;華中農(nóng)大研究成果獲世界聲譽(yù)[N];湖北日?qǐng)?bào);2009年
2 莊愉;新型抗結(jié)核疫苗的開發(fā)研究[N];中國醫(yī)藥報(bào);2002年
3 記者 陳青;讓結(jié)核菌三天內(nèi)原形畢露[N];文匯報(bào);2009年
4 錢忠軍;華中農(nóng)大發(fā)現(xiàn)新基因有望控制結(jié)核病[N];江蘇科技報(bào);2009年
5 駐鄂記者 錢忠軍 通訊員 金安江 范敬群;發(fā)現(xiàn)可能控制結(jié)核病的新基因[N];文匯報(bào);2009年
6 記者 黃每裕;珠海推出兩種檢測(cè)試劑新產(chǎn)品[N];中國醫(yī)藥報(bào);2009年
7 莊愉;新型抗結(jié)核疫苗的開發(fā)研究[N];中國醫(yī)藥報(bào);2002年
8 記者 項(xiàng)錚;團(tuán)山會(huì)議研討罕見病原體防治策略[N];科技日?qǐng)?bào);2009年
9 ;整合力量 抗擊“瘟神”[N];中國醫(yī)藥報(bào);2003年
10 宋心德;IDSA2基因?qū)е陆Y(jié)核桿菌產(chǎn)生抗藥性[N];醫(yī)藥經(jīng)濟(jì)報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 樊愛琳;Rpf蛋白結(jié)構(gòu)域的生物學(xué)及免疫學(xué)特性的初步研究[D];第四軍醫(yī)大學(xué);2008年
2 董海燕;中國13省市結(jié)核分枝桿菌基因多態(tài)性分析[D];中國疾病預(yù)防控制中心;2011年
3 陳嘉臻;結(jié)核分枝桿菌特異的RD2/RD11蛋白應(yīng)用于結(jié)核免疫診斷的研究[D];復(fù)旦大學(xué);2009年
4 王平;肺分枝桿菌感染臨床特征、耐藥模式、預(yù)后研究及肺組織結(jié)核分枝桿菌巢式PCR檢測(cè)[D];北京協(xié)和醫(yī)學(xué)院;2011年
5 陳軍;武漢地區(qū)結(jié)核分枝桿菌藥物敏感性及氟喹諾酮耐藥分子機(jī)制的研究[D];華中科技大學(xué);2011年
6 陳軍;武漢地區(qū)結(jié)核分枝桿菌藥物敏感性及氟喹諾酮耐藥分子機(jī)制研究[D];華中科技大學(xué);2011年
7 薛瑩;結(jié)核分枝桿菌Rpf樣蛋白生物學(xué)及免疫學(xué)活性的研究[D];第四軍醫(yī)大學(xué);2005年
8 樂軍;耐藥結(jié)核分枝桿菌的多維分析[D];復(fù)旦大學(xué);2003年
9 孫勇;北京地區(qū)結(jié)核分枝桿菌耐藥分子特點(diǎn)及結(jié)核分枝桿菌耐喹諾酮類藥物泵機(jī)制的初步研究[D];北京市結(jié)核病胸部腫瘤研究所;2012年
10 劉凱;結(jié)核分枝桿菌潛伏感染者和初發(fā)結(jié)核病患者免疫分子標(biāo)識(shí)的篩選[D];北京協(xié)和醫(yī)學(xué)院;2010年
相關(guān)碩士學(xué)位論文 前10條
1 李立青;結(jié)核分枝桿菌Rv2389c和Rv2450c基因的克隆表達(dá)及其生物學(xué)功能的初步研究[D];第四軍醫(yī)大學(xué);2006年
2 高曉鵬;結(jié)核分枝桿菌Rv1884c和Rv0867c基因的克隆表達(dá)及其促生長作用的研究[D];第四軍醫(yī)大學(xué);2007年
3 蔡溢;結(jié)核分枝桿菌RmlA的表達(dá)、純化以及酶促反應(yīng)動(dòng)力學(xué)研究[D];大連醫(yī)科大學(xué);2006年
4 王霞芳;IFN-γ增強(qiáng)BALB/c小鼠對(duì)結(jié)核分枝桿菌感染的抵抗力[D];蘇州大學(xué);2002年
5 曹立雪;應(yīng)用膜芯片檢測(cè)結(jié)核分枝桿菌rpoB基因突變[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2003年
6 韓喜琴;噬菌體生物擴(kuò)增法檢測(cè)結(jié)核分枝桿菌藥物敏感性研究及評(píng)價(jià)[D];北京市結(jié)核病胸部腫瘤研究所;2004年
7 王琳;結(jié)核分枝桿菌ClpX和ClpP2蛋白酶的克隆表達(dá)及其性質(zhì)研究[D];西南大學(xué);2010年
8 徐蕾;結(jié)核分枝桿菌三種復(fù)活促進(jìn)因子的原核表達(dá)和初步應(yīng)用[D];重慶醫(yī)科大學(xué);2007年
9 丁衛(wèi)民;耐多藥肺結(jié)核與結(jié)核分枝桿菌L型感染的臨床研究[D];山西醫(yī)科大學(xué);2003年
10 吳玉敏;1.結(jié)核分枝桿菌去標(biāo)簽Mtb8.4-Hspx和Hspx-Mtb8.4基因克隆及表達(dá) 2.FTY720對(duì)腎移植受者治療的安全性和有效性系統(tǒng)評(píng)價(jià)[D];蘭州大學(xué);2010年
,本文編號(hào):2133720
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2133720.html