天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于旅客行為的航空旅客細(xì)分模型研究及其實(shí)現(xiàn)

發(fā)布時(shí)間:2018-02-13 18:32

  本文關(guān)鍵詞: 客戶行為 客戶細(xì)分 聚類 DBSCAN 核方法 并行聚類 出處:《南京航空航天大學(xué)》2012年碩士論文 論文類型:學(xué)位論文


【摘要】:近年來,市場(chǎng)經(jīng)濟(jì)不穩(wěn)定,民航業(yè)遭受了重大的打擊。隨著人們對(duì)交通需求的增大,各個(gè)交通行業(yè)都加大力度爭(zhēng)奪市場(chǎng),這無形中加重了民航業(yè)的壓力。各大航空公司開始從客戶的增量競(jìng)爭(zhēng)轉(zhuǎn)向客戶的存量競(jìng)爭(zhēng),,為了把握優(yōu)質(zhì)客戶資源,越來越多的航空公司施行了客戶關(guān)系管理(CRM)系統(tǒng),從而進(jìn)行有效的客戶細(xì)分。 目前,民航領(lǐng)域主流旅客細(xì)分方法一般基于旅客價(jià)值,即根據(jù)旅客消費(fèi)金額來實(shí)現(xiàn)細(xì)分。對(duì)于民航業(yè)這一特殊的領(lǐng)域,該方法有失偏頗,不能考慮旅客其他行為特征。因此,本文提出基于旅客行為的航空旅客細(xì)分模型,結(jié)合聚類技術(shù)進(jìn)行細(xì)分。首先針對(duì)民航旅客行為屬性特征,結(jié)合DBSCAN算法和核方法,消除民航旅客行為屬性分布散亂、數(shù)據(jù)差異不明顯等缺點(diǎn)。該方法是以犧牲時(shí)間效率為前提的,在信息爆炸的時(shí)代,民航客戶系統(tǒng)中每天都會(huì)產(chǎn)生成千上萬條信息數(shù)據(jù),時(shí)間效率成為了必要的考慮因素。因此,本文接著利用當(dāng)前較為流行的分布式并行計(jì)算技術(shù),將該串行聚類算法并行化,計(jì)算過程中,針對(duì)民航客戶“兩端少,中間多”的特征,引入密度因子的概念,對(duì)合并方法進(jìn)行了適當(dāng)?shù)母倪M(jìn)。實(shí)驗(yàn)證明,本文的聚類方法適用于基于旅客行為的航空旅客細(xì)分模型,不僅提高了聚類結(jié)果的準(zhǔn)確率,而且大大提升了聚類的時(shí)間效率。 本文最后給出了基于旅客行為細(xì)分模型的實(shí)現(xiàn)案例,對(duì)A航空公司客戶進(jìn)行細(xì)分,并對(duì)結(jié)果進(jìn)行了分析,指出相應(yīng)的營(yíng)銷策略,為A航空公司乃至整個(gè)民航領(lǐng)域提出了很好的市場(chǎng)戰(zhàn)略指導(dǎo)。
[Abstract]:In recent years, the market economy has been unstable, and the civil aviation industry has suffered a major blow. With the increasing demand for transportation, various transport industries have increased their efforts to compete for the market. This virtually aggravated the pressure on the civil aviation industry. Major airlines began to shift from incremental customer competition to customer stock competition. In order to take advantage of high-quality customer resources, more and more airlines have implemented customer relationship management (CRM) systems. In order to carry out effective customer segmentation. At present, the mainstream passenger segmentation method in civil aviation field is generally based on passenger value, that is, according to the amount of passenger consumption. For this particular area of the civil aviation industry, the method is biased and does not take into account other characteristics of passenger behavior. In this paper, an airline passenger subdivision model based on passenger behavior is proposed, which is based on clustering technology. Firstly, aiming at the characteristics of civil aviation passenger behavior attributes, combined with DBSCAN algorithm and kernel method, it eliminates the scattered distribution of civil aviation passenger behavior attributes. The method is based on sacrificing time efficiency. In the era of information explosion, thousands of information data are produced every day in civil aviation customer system, and time efficiency becomes a necessary consideration. Then, using the popular distributed parallel computing technology, this paper parallelizes the serial clustering algorithm. In the process of computing, the concept of density factor is introduced in view of the characteristics of civil aviation customers with "few ends and more intermediate". The experimental results show that the proposed clustering method is suitable for the passenger behavior based airline passenger subdivision model, which not only improves the accuracy of the clustering results, but also greatly improves the time efficiency of the clustering. At the end of this paper, an implementation case based on passenger behavior subdivision model is given, and the customers of airline A are subdivided, and the results are analyzed, and the corresponding marketing strategies are pointed out. For A airline and even the entire field of civil aviation put forward a good market strategy guidance.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP311.13;F562;F274

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 演克武;張磊;孫強(qiáng);;決策樹分類法中ID3算法在航空市場(chǎng)客戶價(jià)值細(xì)分中的應(yīng)用[J];商業(yè)研究;2008年03期

2 劉英姿;吳昊;;客戶細(xì)分方法研究綜述[J];管理工程學(xué)報(bào);2006年01期

3 謝寰紅;數(shù)據(jù)挖掘在證券公司CRM客戶細(xì)分中的應(yīng)用[J];計(jì)算機(jī)工程;2004年S1期

4 王紅,李曉暉;基于數(shù)據(jù)挖掘的航空公司客戶信息分析[J];計(jì)算機(jī)工程;2005年S1期

5 閆相斌;李一軍;葉強(qiáng);;基于購(gòu)買行為的客戶分類方法研究[J];計(jì)算機(jī)集成制造系統(tǒng);2005年12期

6 趙國(guó)亮;黃沙日娜;;修正核函數(shù)模糊聚類算法[J];計(jì)算機(jī)應(yīng)用;2010年07期

7 宋明,劉宗田;基于數(shù)據(jù)交疊分區(qū)的并行DBSCAN算法[J];計(jì)算機(jī)應(yīng)用研究;2004年07期

8 尹汪宏;李朝峰;張俊本;王正友;;基于混合核函數(shù)的自組織神經(jīng)網(wǎng)絡(luò)遙感圖像分類[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年02期

9 何中勝;劉宗田;莊燕濱;;基于數(shù)據(jù)分區(qū)的并行DBSCAN算法[J];小型微型計(jì)算機(jī)系統(tǒng);2006年01期

10 夏魯寧;荊繼武;;SA-DBSCAN:一種自適應(yīng)基于密度聚類算法[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2009年04期

相關(guān)博士學(xué)位論文 前1條

1 張道強(qiáng);基于核的聯(lián)想記憶及聚類算法的研究與應(yīng)用[D];南京航空航天大學(xué);2005年

相關(guān)碩士學(xué)位論文 前10條

1 胡達(dá);基于客戶行為的3G客戶細(xì)分研究[D];華南理工大學(xué);2011年

2 汪亞鷗;論電信客戶細(xì)分模型的建設(shè)[D];四川大學(xué);2004年

3 李曉利;基于核函數(shù)的聚類分析研究[D];大連理工大學(xué);2006年

4 李媛;電信企業(yè)客戶細(xì)分的模型研究[D];北京交通大學(xué);2007年

5 諶波;A航空公司常旅客計(jì)劃研究[D];電子科技大學(xué);2007年

6 許慧;基于數(shù)據(jù)分區(qū)和QR*樹的并行DBSCAN算法研究[D];哈爾濱工程大學(xué);2007年

7 郭云旗;新東方地產(chǎn)公司CRM管理系統(tǒng)設(shè)計(jì)[D];重慶大學(xué);2007年

8 侯文U

本文編號(hào):1508818


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jtysjj/1508818.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b0fb8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com