缺氧的脂肪細胞與巨噬細胞條件培養(yǎng)基對骨骼肌細胞胰島素作用的影響
[Abstract]:Purpose: The translocation of the skeletal muscle glucose transporter 4 (GLUT4) and the phosphorylation of the insulin signal molecules of the skeletal muscle glucose transporter 4 (GLUT4) in the insulin-stimulated skeletal muscle were detected using the fatty cell and the macrophage conditioned medium and the saturated fatty acid. To study the effect of obesity and hypoxia on the insulin action of skeletal muscle, and to investigate the effect of obesity on the insulin resistance of skeletal muscle. System. Methods:1. The fat cells and macrophages were cultured by normal oxygen and hypoxia (1%02,5% CO2,94% N2), respectively. Conditioned medium.2. The skeletal muscle cells were incubated with the conditioned medium of adipocytes and macrophages, and the skeletal muscle GLUT was determined using the absorbance analysis method of the coupled antibody. 4 Determination of insulin signal by using (?) western Blot method Phosphorylation level of the child.3. The skeletal muscle cells were incubated with saturated fatty acid palmitic acid, and the GL of the skeletal muscle was determined using the absorbance analysis method of the coupled antibody. U Transposition of T4, using (?) Western Blot to measure the insulin letter Phosphorylation level of the number of molecules.4. The method of ELISA was used to determine the conditions of the adipocytes and macrophages. The levels of TNF-a and TNF-a mRNA, TNF-a mRNA and macrophagocytosis in the fat cells treated with normal oxygen and hypoxia were determined by the Real-time PCR. Cell TNF-a mRNA level.6. Using the Transwell system to observe the culture of normal oxygen and hypoxia 7. The chemotaxis of fat cells to macrophages. SPS S13.1.0 Statistical analysis of the software. Results:1. Anoxia treatment Adipocytes and macrophages, GLUT1 protein expression increased.2. Normal oxygen treated fat cell conditioned medium for skeletal muscle cells, in both C2C12 and L6 skeletal muscle cells, basal and insulin Compared with the control group, the expression of GLUT4 was significantly higher than that in the control group (p0.05, p0.01) compared with the control group (p0.05, p0.01). There was no significant difference between the shock-induced GLUT4 index and the control group, and the increase of the insulin-stimulated GLUT4 index in the C2C12 skeletal muscle cells decreased in comparison with the control group, but no significant difference was observed. The difference in sex and the significant decrease in L6 cells (p0.05).3. The C2C12 skeletal muscle cells were incubated with normal oxygen-treated macrophage conditioned medium and the basal and insulin levels were compared to the control group. There was no significant difference in GLUT4 transposition in the condition of stimulation, but there was no significant difference. In the conditioned medium of the macrophages treated with hypoxia, the skeletal muscle cells were incubated, and compared with the control group, there was a significant increase in GLUT4 transposition in the basal state (p0.05), and insulin. There was an increased tendency of GLUT4 translocation in the stimulated state, but there was no significant difference. The two groups of insulin-stimulated GLUT4 translocation The increased fold decreased with the control group, but there was no significant difference.4. The cultured C2C12 skeletal muscle cells were incubated with normal oxygen treated fat cell conditioned medium, but there was no significant difference in the level of Akt phosphorylation in the basal state compared with the control group. There was no significant difference in the level of Akt phosphorylation of insulin stimulation compared with the control group. The cultured C2C12 skeletal muscle cells were incubated with hypoxic-treated fat cell conditioned medium, but there was no significant difference in Akt phosphorylation in the basal state compared with the control group. There was no significant difference in the level of Akt phosphorylation of insulin stimulation compared with that in the control group.5. The level of Akt phosphorylation in normal oxygen treated macrophage conditioned medium was higher than that of the control group, but there was no significant difference in the level of Akt phosphorylation in the basal state. There was no significant difference between the level of Akt phosphorylation and the control group, but there was no significant difference in the level of Akt phosphorylation in the basal state compared with the control group. There was no significant difference in the level of Akt phosphorylation of the insulin-stimulated cells compared with the control group.6. The skeletal muscle cells were incubated with palmitic acid, which could make the skeletal muscle cells not change significantly compared with the control group in the basal state. The GLUT4 index in the insulin-stimulated group was significantly lower than that in the control group (p0.05). The skeletal muscle cells incubated with the solvent group BSA, insulin, and the phosphoric acid of the skeletal muscle cell Akt were increased. The level of phosphorylation of the Akt phosphorylation in insulin-stimulated insulin was significantly reduced by the incubation of palmitic acid, while insulin increased the level of phosphorylation of S6K, while the incubation of palmitic acid did not affect Phosphorylation of S6K stimulated by insulin and phosphorylation of IRS1 $636/639 phosphorylation 7. Hypoxic treatment The level of TNF-a in the conditioned medium of adipocytes and macrophages increased significantly (p0.01).8. The level of adiponectin mRNA in the cultured adipocytes (p0.01) decreased (p0.01). Oxygen-treated adipocytes and macrophages, TNF-1 mRNA horizontal display Conclusion:1. Anoxia tissue culture The culture cells of the culture box can cause hypoxia of the fat cells and the macrophages, and can simulate the hypoxia of the fat tissues of the obesity patients and prepare the conditioned medium. the myoblasts can cause a downward trend in the increase in the number of GLUT4 transposition of the skeletal muscle cell insulin stimulation, However, there was no significant difference. The incubation of skeletal muscle cells with hypoxic-treated fatty cell conditioned medium could cause insulin resistance in skeletal muscle cells.3. The conditioned medium of macrophage conditioned by normal oxygen treatment and hypoxia The incubation of skeletal muscle cells resulted in a decrease in the number of GLUT4 transposition of the skeletal muscle cell insulin-stimulated 4. The incubation of saturated fatty acids can lead to insulin resistance of skeletal muscle cells, which The system may not involve S6K.5. The fat cells are fat in the oxygen-deficient state. The level of expression of adiponectin decreased significantly, and the level of TNF-VEGF was significantly increased. The levels of TNF-VEGF in the cells were significantly increased in the condition of hypoxia. These factors may be involved in the conditioned medium
【學(xué)位授予單位】:天津醫(yī)科大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2010
【分類號】:R587.1;R329
【相似文獻】
相關(guān)期刊論文 前10條
1 張蓉;朱榕峰;徐俊;周麗斌;張迪;楊鍵;楊穎;陳名道;;大黃素改善脂多糖引起的胰島素抵抗機制研究[J];上海中醫(yī)藥雜志;2010年08期
2 高宇;宋光耀;;骨骼肌脂肪酸轉(zhuǎn)位酶FAT/CD36與胰島素抵抗[J];中國老年學(xué)雜志;2008年14期
3 侯士方;孟馨;相泓冰;王滌非;;胰島素抵抗骨骼肌細胞中P-Ser473PKB及糖原合成酶-3表達[J];山西醫(yī)藥雜志;2011年01期
4 潘作東;盧雁;何冰;張詠言;韓萍;;大鼠游離脂肪酸的異常蓄積導(dǎo)致骨骼肌胰島素抵抗機制的研究[J];中國老年學(xué)雜志;2008年10期
5 姜兆順;趙建芹;劉元濤;;脂肪因子與骨骼肌胰島素抵抗研究進展[J];山東醫(yī)藥;2010年17期
6 侯士方;孟馨;相泓冰;王滌非;;蛋白激酶C對胰島素抵抗骨骼肌細胞的影響[J];中國組織化學(xué)與細胞化學(xué)雜志;2011年03期
7 畢會民,歐陽靜萍,鄧向群,陳小琳,張妍,宋春宇;胰島素抵抗大鼠骨骼肌中蛋白激酶B表達及葡萄糖轉(zhuǎn)運蛋白4轉(zhuǎn)位的改變[J];中華糖尿病雜志;2005年04期
8 王滌非;蔡冬梅;蔣麗娟;張錦;;老年胰島素抵抗小鼠骨骼肌細胞磷脂酰肌醇-3激酶的表達[J];中國現(xiàn)代醫(yī)學(xué)雜志;2006年10期
9 李春艷;;氧化應(yīng)激、骨骼肌胰島素抵抗與抗氧化劑干預(yù)[J];生命的化學(xué);2009年06期
10 付正香;牛文彥;;飽和脂肪酸對骨骼肌細胞胰島素作用的影響及其機制研究[J];天津醫(yī)科大學(xué)學(xué)報;2010年03期
相關(guān)會議論文 前10條
1 臧麗;;LRP16基因?qū)2-C12骨骼肌細胞胰島素抵抗的影響及機制研究[A];中華醫(yī)學(xué)會第十次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2011年
2 尹丙姣;;跨膜型和分泌型TNF-α在脂肪細胞胰島素抵抗中的作用[A];第六屆全國免疫學(xué)學(xué)術(shù)大會論文集[C];2008年
3 郝麗萍;曲巍;趙立娜;孫秀發(fā);;酒精對原代培養(yǎng)大鼠骨骼肌細胞葡萄糖攝取及胰島素信號轉(zhuǎn)導(dǎo)分子的影響[A];第四屆第二次中國毒理學(xué)會食品毒理學(xué)專業(yè)委員會與營養(yǎng)食品所毒理室聯(lián)合召開學(xué)術(shù)會議論文集[C];2008年
4 楊芝春;李元建;;ADMA誘導(dǎo)脂肪細胞胰島素抵抗的作用及機制研究[A];湖南省生理科學(xué)會2008年度學(xué)術(shù)年會論文摘要匯編[C];2008年
5 湯慧芹;徐焱成;;早衰素相關(guān)菱形體樣蛋白基因在胰島素抵抗和2型糖尿病大鼠中骨骼肌的表達[A];2006年中華醫(yī)學(xué)會糖尿病分會第十次全國糖尿病學(xué)術(shù)會議論文集[C];2006年
6 朱烈烈;李永領(lǐng);林露陽;張榮;陳大慶;;重型顱腦創(chuàng)傷大鼠模型外周組織β-arrestin-2 mRNA與胰島素抵抗[A];2009年浙江省急診醫(yī)學(xué)學(xué)術(shù)年會論文匯編[C];2009年
7 蘭穎;李洪波;吳紅赤;;脂源性瘦素的表達與尿毒癥胰島素抵抗的研究[A];中華醫(yī)學(xué)會腎臟病學(xué)分會2006年學(xué)術(shù)年會論文集[C];2006年
8 成秀梅;杜惠蘭;;多囊卵巢綜合征與胰島素抵抗及中西藥干預(yù)治療[A];全國中醫(yī)婦科第六次學(xué)術(shù)研討會論文匯編[C];2006年
9 薛冰;母義明;李曉瑾;王煊;臧麗;呂朝暉;竇京濤;陸菊明;潘長玉;;LRP16基因通過激活NF-κB通路導(dǎo)致3T3-L1脂肪細胞胰島素抵抗[A];中華醫(yī)學(xué)會第十次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2011年
10 劉倩;葉菲;陶榮亞;賀伊博;劉峻tR;田金英;;大黃酸改善小鼠胰島素抵抗的實驗研究[A];中國中西醫(yī)結(jié)合學(xué)會微循環(huán)2009學(xué)術(shù)大會會議指南及論文摘要[C];2009年
相關(guān)重要報紙文章 前10條
1 衣曉峰;2型糖尿病動物模型成模率逾85%[N];健康報;2005年
2 張家慶 (教授);適度鍛煉身體改善胰島素抵抗[N];上海中醫(yī)藥報;2003年
3 成楓;“青錢柳”可改善胰島素抵抗[N];中國中醫(yī)藥報;2006年
4 趙振愛;中藥可改善糖尿病胰島素抵抗[N];中國中醫(yī)藥報;2007年
5 傅敏端;你知道胰島素抵抗嗎[N];家庭醫(yī)生報;2008年
6 第一軍醫(yī)大學(xué)珠江醫(yī)院內(nèi)分泌科 劉宏;糖尿病和胰島素抵抗[N];中國老年報;2003年
7 第一軍醫(yī)大學(xué)珠江醫(yī)院內(nèi)分泌科 劉宏;糖尿病和胰島素抵抗[N];科技日報;2003年
8 副主任醫(yī)師 韓詠霞;為何妊娠期婦女易發(fā)胰島素抵抗[N];保健時報;2006年
9 劉士敬邋劉紅虹;肝源性糖尿病患者宜早用胰島素[N];家庭醫(yī)生報;2007年
10 湘雅二醫(yī)院 陳化;胰島素抵抗:糖尿病、心血管疾病的重要危險因素[N];大眾衛(wèi)生報;2002年
相關(guān)博士學(xué)位論文 前10條
1 李金茹;缺氧的脂肪細胞與巨噬細胞條件培養(yǎng)基對骨骼肌細胞胰島素作用的影響[D];天津醫(yī)科大學(xué);2010年
2 高麗;長期飲酒增加大鼠胰島素抵抗和骨骼肌蛋白酪氨酸磷酸酶1B活性的研究[D];山東大學(xué);2011年
3 王文匯;血管緊張素Ⅱ受體與骨骼肌微循環(huán)胰島素抵抗[D];山東大學(xué);2012年
4 李宏亮;代謝綜合征內(nèi)皮細胞胰島素抵抗分子機理研究[D];四川大學(xué);2005年
5 梅玫;炎癥導(dǎo)致異位脂肪沉積的分子機制[D];重慶醫(yī)科大學(xué);2011年
6 康有厚;實驗性胰島素依賴型糖尿病大鼠發(fā)生胰島素抵抗機理的研究[D];中國協(xié)和醫(yī)科大學(xué);1989年
7 李全民;1.胰島素抵抗大鼠G-6-Pase、GK、UCPs基因表達和干預(yù)研究 2.PPARα基因變異與2型糖尿病家系血脂的關(guān)系[D];重慶醫(yī)科大學(xué);2003年
8 張梁;針刺對胰島素抵抗模型大鼠干預(yù)的信號轉(zhuǎn)導(dǎo)機制研究[D];廣州中醫(yī)藥大學(xué);2010年
9 朱偉;攝食抑制因子NUCB2/Nesfatin-1對機體胰島素敏感性的影響[D];重慶醫(yī)科大學(xué);2011年
10 完強;乙醇對大鼠骨骼肌胰島素敏感性的影響及機制探討[D];山東大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李娟娟;運動對胰島素抵抗大鼠脂肪細胞葡萄糖轉(zhuǎn)運蛋白4的影響[D];武漢大學(xué);2005年
2 高勇;胰島素信號通路中GLUT4的作用機制研究[D];浙江大學(xué);2006年
3 黃朝莉;NF-κB在2型糖尿病脂肪組織IR的作用[D];重慶醫(yī)科大學(xué);2008年
4 李梅;針刺調(diào)節(jié)胰島素抵抗模型大鼠IRS-1、IRS-2和GLUT4的實驗研究[D];廣州中醫(yī)藥大學(xué);2011年
5 王芳;多囊卵巢綜合征患者血清apelin水平變化及相關(guān)因素分析[D];山東大學(xué);2010年
6 楊凌輝;黃芪改善高脂飼養(yǎng)大鼠胰島素抵抗的機制研究[D];第二軍醫(yī)大學(xué);2002年
7 許歡妮;褪黑素及其受體激動劑對脂肪細胞胰島素抵抗相關(guān)因子影響的研究[D];南華大學(xué);2010年
8 劉迪杰;游離脂肪酸對HepG2肝細胞脂聯(lián)素受體表達的影響[D];中國醫(yī)科大學(xué);2006年
9 紀志尚;肥胖患者血清腫瘤壞死因子(INF-α)、游離脂肪酸(FFA)水平變化及其與胰島素抵抗(IR)相關(guān)性研究[D];青島大學(xué);2002年
10 冉曉丹;疏肝解郁法對2型糖尿病伴抑郁者胰島素抵抗的研究[D];湖北中醫(yī)藥大學(xué);2010年
,本文編號:2488274
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2488274.html