STAT1在G-CSF誘導(dǎo)異基因造血干細(xì)胞移植供者T細(xì)胞免疫耐受中的作用
[Abstract]:Objective: Clinical practice shows that G-CSF is used as a stem cell mobilization agent for peripheral blood stem cell transplantation, and its acute graft-versus-host response is not higher than that of conventional bone marrow transplantation. This suggests that G-CSF has the effect of inducing immune tolerance. G-CSF can regulate the immune function of stem cell grafts from T cell differentiation, dendritic cells (DCs), mononuclear cells, regulatory T cells and other angles, and induce T cells in the graft to generate immune tolerance. At present, there is a significant decrease in Th1 type cytokines (IFN-, IL-2, T-bet, IL-12, etc.) after G-CSF stimulation, while Th2 cytokines (IL-10, IL-4, GATA-3, etc.) have increased significantly, which plays an important role in inducing immune tolerance. However, there is still a great controversy on whether G-CSF receptor is present on T cells, and whether G-CSF can directly play a role in T cells is still uncertain. JAK-STAT signal transduction pathway is one of the most important signal transduction pathways in organism. It is necessary to take part in many pathophysiological processes in the body, regulate the expression of many genes in the body, and make about 50 kinds of cytokines through it Therefore, it is very heavy for the maintenance of various physiological functions of the body and the correct response to external stimuli STAT1, as an important signal transduction factor of Th1 type cytokines, resides in the transcription of the genes induced by IFN-jun and IL-2. Core status. And many scholars have confirmed STAT1 is very important However, we have not studied the changes of STAT1 in immune tolerance induced by G-CSF. Therefore, in the process of G-CSF induced immune tolerance, the number and ratio of Th1 cells and Th2 cells were detected, and the expression levels of G-CSF receptor, T-bet, GATA-3 and STAT1 were detected, and the effects of G-CSF receptor, T-bet, GATA-3 and STAT1 were investigated. The knowledge of the system is to regulate it. to lay a foundation Methods: 1 Collection of specimens: Twenty-three bone marrow transplantation donors were taken to apply G-CSF mobilization before and after mobilization of G-CSF for 3 days. Blood samples 10ml, heparin anti-coagulation. 2 groups: two groups, namely, donor application G-CSF mobilization, peripheral blood sample and donor application G-CSF mobilised peripheral blood samples, paired specimens. CD4 + T cells were sorted by immunomagnetic bead sorting: After isolated mononuclear cells were isolated from the collected peripheral blood samples, CD4 + T cells were isolated and purified by immunomagnetic beads sorting. and finally, detecting the purity of CD4 + T cells by flow cytometry and counting. CD4 + T cells in CD4 + T cells and Th1/ Th2 ratio in CD4 + T cells CD4 + T cells from CD4 + T cells were used to extract RNA and reverse transcribed into cDNA. Real-time quantitative polymerase chain reaction (RQ-PCR) was used to detect G in vivo. Changes of G-1R, T-bet, GATA-3 and STAT1 expression levels before and after CSF mobilization. 7 Purified CD4 + T Cells were cultured, and G-CSF stimulated by different concentrations were added during culture to observe the effect of stimulating T cell proliferation. Using. 8, the CD4 + T cells cultured before and after stimulation with G-CSF were collected, RNA was extracted and reverse transcribed into cDNA. in vitro culture The expression of G-1R, T-bet, GATAT-3 and STAT1 in CD4 + T cells after G-CSF stimulation was changed. 1. The Th1/ Th2 ratio of CD4 + T cells was detected by flow cytometry. The Th1/ Th2 ratio after G-mobilization was higher than that before mobilization. The ratio of h2 was significantly lower. We counted the CD4 + T cell count in the specimen to show the number of CD4 + T cells after 3 days after G-CSF mobilization. and the proportion of the individual nuclear cells increased. 3, the application of the RQ-PCR detection in vivo application G The changes of G-, R, T-bet, GATA-3 and STAT1 levels after CSF mobilization were observed. The purified CD4 + T lymphocytes showed that G-CSF could stimulate CD4 + T lymphocytes after separation. The concentration of G-CSF decreased after 48 hours, and disappeared after 72 hours. The stimulation concentration of G-CSF was 200ng/ ml. 5 RQ-PCR was used to detect the G-1R, T-be of CD4 + T cells before and after G-CSF stimulation. t,G The expression of ATA-3 and STAT1 showed that after G-CSF stimulation was added in vitro, CD4 T-bet and STAT1 showed a decrease in the expression of G-1R and GATA-3 in + T cells. After the mobilization of G-CSF in vivo, the ratio of Th1/ Th2 was significantly lower than before mobilization (P0.01). After the stimulation of G-CSF, CD4 + T lymphocytes differentiate into Th2, which may induce the production of immune tolerance. After mobilization of G-CSF in vivo, CD4 + T cells are short-term (within at least 3 days) Proliferation can occur due to stimulation of G-CSF. 3. In vitro culture and isolation of purified CD4 + T lymphocytes stimulated the proliferation of CD4 + T lymphocytes after separation. This effect reached the peak at 12-24 hours, began to decrease after 48 hours, and disappeared after 72 hours. The optimum concentration of G-CSF was 200ng/ ml. The expression level of G-CSF R after G-CSF mobilization was not increased in 4 patients. In addition to the addition of G-CSF stimulation, the expression of G-CSF R may be increased after the addition of G-CSF, which may be related to the difference in vivo and external environment, as well as in vivo G. The CSF concentration was at a low level and the concentration was not stable. The trend of GATA-3 and T-bet after G-CSF mobilization was not obvious in 5 patients. There was a significant increase in GATA-3 after G-CSF, while T-bet decreased significantly, which could be related to environmental differences outside the body.. 6 STAT1 was not reduced after G-CSF mobilization in vivo, but in the body
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2009
【分類號】:R392
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 秦春明;侯華新;程道海;李力;黎丹戎;劉瑛;宋慧;;大黃素對順鉑耐藥卵巢癌細(xì)胞的逆轉(zhuǎn)作用及其相關(guān)基因表達(dá)研究[J];天然產(chǎn)物研究與開發(fā);2011年04期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 肖紅梅;盧光t;;STAT1蛋白質(zhì)表達(dá)調(diào)控的研究[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年
2 李丹;韓笑;劉建勛;;雙參通冠方對大鼠心肌缺血損傷時G-CSF的影響[A];第十一屆全國中藥藥理學(xué)術(shù)大會論文摘要[C];2010年
3 沈文怡;錢思軒;洪鳴;張閏;陸化;劉澎;徐衛(wèi);仇紅霞;吳漢新;李建勇;;單次大劑量足葉乙甙聯(lián)合G-CSF動員自體外周血造血干細(xì)胞------80例惡性血液病患者應(yīng)用療效觀察[A];第13屆全國實驗血液學(xué)會議論文摘要[C];2011年
4 汪虹;王君;劉海平;;G-CSF動員內(nèi)皮祖細(xì)胞促進(jìn)ADM移植區(qū)血管新生的實驗研究[A];中華醫(yī)學(xué)會燒傷外科學(xué)分會2009年學(xué)術(shù)年會論文匯編[C];2009年
5 薛洪利;周江朝;于春泳;劉民培;邵雙偉;許鋒;王志軍;藺迪;;應(yīng)用G-CSF動員骨髓干細(xì)胞治療重型顱腦損傷的研究[A];中國醫(yī)師協(xié)會神經(jīng)外科醫(yī)師分會第六屆全國代表大會論文匯編[C];2011年
6 陳銀葵;吳秀麗;宣麗;吳梅青;黃芬;張鈺;劉啟發(fā);;HLA-G介導(dǎo)的G-CSF誘導(dǎo)免疫耐受機(jī)理的研究[A];第13屆全國實驗血液學(xué)會議論文摘要[C];2011年
7 孫洋;吳興新;尹業(yè);沈燕;徐強(qiáng);;中國薊醇選擇性下調(diào)IFN-γ/STAT1信號通路改善炎癥性腸炎的機(jī)理研究[A];第十屆全國抗炎免疫藥理學(xué)學(xué)術(shù)會議論文集[C];2010年
8 梁淑娟;魏海明;田志剛;;IFNa通過STAT3、STAT1信號通路上調(diào)NK細(xì)胞的殺傷活性[A];山東免疫學(xué)會、山東微生物學(xué)會醫(yī)學(xué)微生物學(xué)專業(yè)委員會、山東省醫(yī)學(xué)會微生物學(xué)和免疫學(xué)專業(yè)委員會、山東省醫(yī)藥生物技術(shù)學(xué)會2001年學(xué)術(shù)年會論文匯編[C];2001年
9 梁淑娟;魏海明;田志剛;;IFN-α通過STAT3,STAT1信號通路上調(diào)NK細(xì)胞的殺傷活性[A];第七屆全國腫瘤生物治療學(xué)術(shù)會議論文集[C];2001年
10 劉壽榮;;G-csf診斷肝硬化脾功能亢進(jìn)合并感染的臨床應(yīng)用[A];2005年浙江省醫(yī)學(xué)病毒學(xué)、醫(yī)學(xué)微生物與免疫學(xué)學(xué)術(shù)會議論文匯編[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 范賢明;STAT1、STAT1依賴性免疫反應(yīng)基因ICAM-1在肺纖維化中的作用及反義寡核苷酸干預(yù)的研究[D];四川大學(xué);2003年
2 王俊濤;G-CSF及褪黑素對膠質(zhì)瘤細(xì)胞增殖、遷移和侵襲的影響及機(jī)制研究[D];山東大學(xué);2012年
3 范佳;粒細(xì)胞集落刺激因子在急性腦缺血中的神經(jīng)保護(hù)作用的研究[D];吉林大學(xué);2005年
4 李德冠;P38 MAPK抑制劑聯(lián)合G-CSF對全身γ射線照射小鼠輻射損傷的實驗治療研究[D];北京協(xié)和醫(yī)學(xué)院;2012年
5 周曉旭;普伐他汀干預(yù)p38 MAPK、IFN-gamma/STAT1、IL-6/STAT3信號傳導(dǎo)通路預(yù)防動脈粥樣硬化的實驗研究[D];上海交通大學(xué);2008年
6 鄧昊;STAT1和Survivin及相關(guān)蛋白在胃癌中相關(guān)性及其臨床病理學(xué)意義的研究[D];華中科技大學(xué);2006年
7 郭曉玲;G-CSF誘導(dǎo)T淋巴細(xì)胞向TH2分化的機(jī)制研究[D];中國人民解放軍軍醫(yī)進(jìn)修學(xué)院;2008年
8 姚志峰;G-CSF對壓力超負(fù)荷下小鼠心室重構(gòu)和心力衰竭的影響[D];復(fù)旦大學(xué);2008年
9 阮曄;應(yīng)用基因芯片技術(shù)對Graves病、甲狀腺乳頭狀癌相關(guān)基因表達(dá)的研究[D];第二軍醫(yī)大學(xué);2004年
10 鄧昊;STAT1和Survivin及相關(guān)蛋白在胃癌中相關(guān)性的研究及其臨床意義[D];華中科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 蔡圣鑫;STAT1在G-CSF誘導(dǎo)異基因造血干細(xì)胞移植供者T細(xì)胞免疫耐受中的作用[D];河北醫(yī)科大學(xué);2009年
2 劉春鳳;STAT1基因沉默對哮喘小鼠IFN-γ、IL-5、ICAM-1表達(dá)的影響[D];瀘州醫(yī)學(xué)院;2012年
3 盧年芳;不同亞型干擾素-α抗乙型肝炎病毒活性的實驗研究[D];重慶醫(yī)科大學(xué);2004年
4 劉濟(jì);非霍奇金淋巴瘤血漿GM-CSF、G-CSF表達(dá)的臨床意義及其與中醫(yī)辨證分型的關(guān)系[D];福建中醫(yī)藥大學(xué);2010年
5 楊華;G-CSF聯(lián)合辛伐他汀動員血管內(nèi)皮祖細(xì)胞的實驗研究[D];昆明醫(yī)學(xué)院;2011年
6 周江朝;應(yīng)用G-CSF動員骨髓干細(xì)胞治療重型顱腦損傷的研究[D];大連醫(yī)科大學(xué);2010年
7 王巍;電離輻射對食管癌細(xì)胞中H2AX、STAT1表達(dá)的影響[D];河北醫(yī)科大學(xué);2011年
8 宋磊;G-CSF對局灶腦缺血再灌注大鼠脂質(zhì)過氧化及神經(jīng)細(xì)胞凋亡的影響[D];吉林大學(xué);2010年
9 王鵬;IFNγ-STAT1信號通路對打破內(nèi)毒素耐受作用機(jī)制的研究[D];山東大學(xué);2012年
10 謝曉強(qiáng);G-CSF動員骨髓干細(xì)胞向缺血再灌注損傷腎臟歸巢并促進(jìn)腎臟修復(fù)的研究[D];天津醫(yī)科大學(xué);2011年
,本文編號:2282917
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2282917.html