UCPs在高原缺氧大鼠腦線(xiàn)粒體能量代謝中的作用
[Abstract]:Mitochondrial oxidative phosphorylation is the transfer of protons from the endometrial matrix to the outer membrane by the respiratory chain during electron transfer to oxygen, forming a transmembrane proton electromotive force (delta P), which drives ATP synthase to catalyze the synthesis of ATP from ADP and inorganic phosphorus. Back in the matrix, proton leaks are formed, Delta P is reduced, oxidative phosphorylation is decoupled, ATP is reduced, and oxygen use efficiency is reduced. This part of oxygen consumption is "ineffective oxygen consumption". UCP4 and UCP5 are members of the UCPs family specifically present in mammalian brain tissues, accounting for more than 84% of the UCPs in the brain. Free fatty acids promote the activity of UCP1 in brown fat, UCP2 and UCP3 in skeletal muscle by binding to certain sites in the conformation of UCPs. They are potential agonists of UCP4 and UCP5. In order to investigate the effect of exogenous free fatty acids on the activity and content of UCPs and the change of mitochondrial energy synthesis in the brain of hypoxic rats at high altitude, the in vitro intervention model of palmitic acid brain block and the model of palmitic acid free brain mitochondrial intervention were used to observe the effect of exogenous free fatty acids on the activity and content of UCPs. The role and regulation mechanism of efficiency.
Method
The in vitro intervention model of palmitic acid brain tissue block and the model of palmitic acid brain free mitochondria intervention were established. The effect of palmitic acid on the expression of UCP4 and UCP5 mRNA and protein in rat brain tissue and the effect of palmitic acid on the oxidative phosphorylation of free brain mitochondria were observed. Healthy male SD rats were exposed to simulated altitude hypobaric chamber at 5000 m for 23 h/d for 3 days (acute group) and 30 days (chronic group) respectively, and control group was set up. After blood collection, the rats were exposed to simulated altitude hypobaric chamber for 3 days (acute group) and 30 days (chronic group). Cerebral hemisphere was cut into 1-2 *2-3 mm2 tissue fragments and mitochondria were separated directly. Brain tissue fragments and free brain mitochondria were interfered with palmitic acid at 100 micromol/L in vitro. Mitochondrial oxidative respiratory activity was measured by Clark oxygen electrode, proton leakage was detected by TPMP + electrode and Clark oxygen electrode. The activity of F0F1-ATPase was measured by inhibiting factor assay, mitochondrial membrane potential by rhodamine 123, adenylate content in brain mitochondria by high performance liquid chromatography, and UCPs activity by combining [3H]-GTP. The expression of UCP4 and UCP5 mRNA and protein were measured by RT-PCR and Western blot respectively. The contents of free fatty acids in serum, brain homogenate and mitochondria were measured in rats.
Result
The expression of UCP4 and UCP5 mRNA reached its peak value, and the expression of UCP4 and UCP5 protein increased significantly, and the respiratory efficiency of mitochondria oxidative phosphorylation decreased significantly. The free cerebral mitochondria of palmitic acid Rats Intervened in vitro when the concentration of palmitic acid was within 0.1 mmol/L and the time was within 1 minute. There is a dose effect relationship.
2. Hypoxia could enhance the activity of UCPs in rat brain tissue. The Kd value decreased by 41.24% in acute hypoxia group, while the Bmax value increased by 1.56 times. Palmitic acid intervention could further increase the activity of UCPs in each group, but the increase was the lowest in acute group. The Kd value decreased only by 13.96%, while the Bmax value increased only by 16.01%.
3. Hypoxia increased the content of free fatty acids in serum, brain homogenate and mitochondria of rats, the highest in acute group was 51.36%, 243.35% and 69.49% respectively. The content of free fatty acids in serum, brain tissue and mitochondria of chronic group was lower than that of acute group, but still higher than that of control group. There was a linear negative correlation between D value and Bmax reflecting UCPs content (the highest correlation coefficient between free fatty acid content and UCPs activity in brain tissue).
4. Mitochondrial ST3, RCR, OPR, P/O and MMP decreased significantly in hypoxic group, while ST4 and proton leakage increased significantly. Palmitic acid could further increase respiratory oxygen consumption and proton leakage, and reduce MMP. Among them, ST3 and ST4 increased by 5.12% and 38.69%, RCR, OPR and P/O increased by 24.64%, 3.19% and 3.96% respectively, while MMP decreased by only 6.91%.
5. The activity of F0F1-ATPase, ATP content, ATP/ADP and ATP/total adenylate ratio in the hypoxic group were significantly decreased, with the most significant decrease in the acute group, 43.32%, 27.79%, 16.39% and 28.67% respectively. Palmitic acid could decrease the total adenylate pool (ATP+ADP+AMP), ATP+ADP pool (ATP+ADP) content by 30.90% and ATP/ADP ratio by 49.29% in the acute group. At the same time, ATP / total adenylate pool ratio of each group decreased, while energy charge of control group and acute group decreased by 36.91% and 13.64% respectively.
6. The expression of UCP4, UCP5 mRNA and protein in the brain of hypoxic group increased significantly. The expression of UCP4 mRNA and protein was 19.04 and 16.95 times higher in the acute group than in the control group. The expression of UCP5 mRNA and protein was 2.17 and 4.71 times higher in the hypoxic group than that in the control group. The minimum amplitude.
conclusion
1. Palmitic acid can directly affect the activity of UCPs and the expression of UCP4 and UCP5 mRNA and protein in brain mitochondria, enhance proton leakage and decoupling respiration, then affect the oxidative phosphorylation function of brain mitochondria, reduce the efficiency of oxidative phosphorylation, and it is time and dose dependent. Hypoxia exposure can weaken the activity and content of palmitic acid-induced UCPs to a certain extent. Efficiency.
2. Hypoxia can increase the activity of UCPs in brain mitochondria, and the expression of UCP4, UCP5 mRNA and protein, which is related to the changes of free fatty acid metabolism in blood and brain during hypoxia.
A summary of the full text
Simulated high altitude hypoxia exposure can increase the free fatty acid content in serum, brain tissue and mitochondria, increase the activity and content of UCPs in brain mitochondria, increase the expression of UCP4 and UCP5 mRNA and protein, increase the proton leakage and decrease the membrane potential, so that the "ineffective oxygen consumption" increases, the oxidative phosphorylation efficiency decreases, and mitochondrial energy synthesis decreases. Palmitic acid can further increase the activity and content of UCPs in the brain mitochondria of hypoxic rats, enhance the expression of UCP4, UCP5 mRNA and protein, thereby increasing proton leakage, reducing membrane potential, enhancing decoupling, and reducing the efficiency of oxidative phosphorylation and energy production. The experiment reveals the relationship between the expression, content and activity of free fatty acid-UCPs, oxygen consumption of mitochondria and ATP production during simulated altitude hypoxia, suggesting that the interaction of free fatty acid-UCPs is one of the important links of energy metabolism disorder during hypoxia.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2008
【分類(lèi)號(hào)】:R363
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王亞利!261031山東,張式暖!261031山東,姜萍!261031山東,劉景邦!261031山東,呂愛(ài)敏!261031山東;復(fù)方丹參注射液對(duì)小鼠心肌保護(hù)作用的研究[J];中國(guó)當(dāng)代兒科雜志;1999年04期
2 王關(guān)嵩,錢(qián)桂生,關(guān)崧,陳維中;肺微血管內(nèi)皮細(xì)胞的培養(yǎng)液對(duì)血管平滑肌細(xì)胞的效應(yīng)[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2000年09期
3 徐劍文,王瑋,康仲涵,張更;缺氧對(duì)血腦屏障細(xì)胞分泌組織型纖溶酶原激活物的影響[J];解剖學(xué)雜志;2000年06期
4 陳曉紅,邊連防,伍愛(ài)民,王竹立,陶亮,胡學(xué)強(qiáng);高糖對(duì)缺氧神經(jīng)元的影響及鈣相關(guān)機(jī)制研究[J];中國(guó)神經(jīng)科學(xué)雜志;2000年04期
5 甄國(guó)華,張珍祥,徐永健;血晶素促進(jìn)缺氧大鼠肺組織誘導(dǎo)型血紅素氧合酶基因的表達(dá)[J];中國(guó)藥理學(xué)通報(bào);2001年03期
6 吳明赴!225001,符明鳳!225001,楊勇!225001,陸奎英!225001,錢(qián)厚明!225001,祝寶華!225001;血清肌鈣蛋白Ⅰ測(cè)定對(duì)新生兒缺氧心肌損傷的診斷價(jià)值[J];江蘇醫(yī)藥;2001年08期
7 李賢峰,鄭紅,楊曄,姜志勝;急重期慢性肺心病患者血漿腎上腺髓質(zhì)素濃度測(cè)定及基礎(chǔ)研究[J];中國(guó)急救醫(yī)學(xué);2001年10期
8 董紅霞,倪敏霞,蔡笑鴻;新生兒缺氧與心、肝、腎功能變化對(duì)比觀察[J];中國(guó)基層醫(yī)藥;2002年09期
9 唐光波,唐曉燕;頭孢曲松致過(guò)敏性休克并失語(yǔ)1例[J];實(shí)用兒科臨床雜志;2003年05期
10 郭方明,宋秀媛,姜波,劉同美,高爾,丁怡,鄧敏;缺氧對(duì)兔胸主動(dòng)脈平滑肌細(xì)胞增殖的影響[J];中國(guó)病理生理雜志;2003年07期
相關(guān)會(huì)議論文 前10條
1 趙永忠;王波;王天才;;血管內(nèi)皮生長(zhǎng)因子在實(shí)驗(yàn)性膽汁性肝硬化形成過(guò)程中的作用[A];第二屆全國(guó)人工肝及血液凈化學(xué)術(shù)年會(huì)論文集[C];2005年
2 李靜;陳平圣;;缺氧肝細(xì)胞影響肝星狀細(xì)胞MMP-2表達(dá)及其活性水平[A];中華醫(yī)學(xué)會(huì)病理學(xué)分會(huì)2009年學(xué)術(shù)年會(huì)論文匯編[C];2009年
3 江偉健;石磊;黃海;趙樹(shù)進(jìn);;高原環(huán)境對(duì)藥物代謝作用的影響[A];2010年廣東省藥師周大會(huì)論文集[C];2011年
4 羅光恒;;CTGF siRNA抑制缺氧導(dǎo)致的腎小管上皮-間質(zhì)轉(zhuǎn)化的實(shí)驗(yàn)研究[A];2010年貴州省泌尿外科學(xué)術(shù)會(huì)議論文集[C];2010年
5 董世山;利凱;王迎春;歐德淵;張建軍;楊玉成;趙立紅;喬健;;缺氧對(duì)肉雞心肌細(xì)胞內(nèi)游離Ca~(2+)濃度的影響[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)獸醫(yī)病理學(xué)分會(huì)第十四次學(xué)術(shù)研討會(huì)、中國(guó)病理生理學(xué)會(huì)動(dòng)物病理生理專(zhuān)業(yè)委員會(huì)第十三次學(xué)術(shù)研討會(huì)論文集[C];2006年
6 周帥;孫曉川;;載脂蛋白E基因多態(tài)性與星形膠質(zhì)細(xì)胞細(xì)胞水腫的相關(guān)性研究[A];第二屆西部神經(jīng)外科學(xué)術(shù)會(huì)議論文集[C];2010年
7 石瑩;朱依純;;缺氧誘導(dǎo)血管新生機(jī)制的研究新進(jìn)展[A];中國(guó)生理學(xué)會(huì)論文匯編2004年第二期[C];2004年
8 趙延?xùn)|;阮懷珍;;缺氧對(duì)海馬CA1區(qū)神經(jīng)元P2X受體功能及表達(dá)的影響[A];中國(guó)神經(jīng)科學(xué)學(xué)會(huì)第六屆學(xué)術(shù)會(huì)議暨學(xué)會(huì)成立十周年慶祝大會(huì)論文摘要匯編[C];2005年
9 高紅;王立萍;祁釗;周晶萍;任衛(wèi)全;;人血清肌鈣蛋白Ⅰ在不同地理位置的臨床表現(xiàn)[A];第五次全國(guó)中青年檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2006年
10 鄒良玉;褚曉凡;;褪黑素通過(guò)抑制線(xiàn)粒體通透性轉(zhuǎn)換孔開(kāi)放保護(hù)缺氧缺糖SHSY5Y細(xì)胞[A];第九次全國(guó)神經(jīng)病學(xué)學(xué)術(shù)大會(huì)論文匯編[C];2006年
相關(guān)博士學(xué)位論文 前10條
1 李志華;早產(chǎn)兒MLS腦干聽(tīng)覺(jué)誘發(fā)電位的特點(diǎn)及缺氧對(duì)誘發(fā)電位的影響[D];復(fù)旦大學(xué);2005年
2 孟繁平;Raf-1在胃癌及其血管生成中的作用及分子機(jī)制研究[D];第四軍醫(yī)大學(xué);2005年
3 付雪梅;AQP4在星形膠質(zhì)細(xì)胞缺氧復(fù)氧損傷模型中的表達(dá)變化及調(diào)控機(jī)制[D];四川大學(xué);2004年
4 張磊;長(zhǎng)江口、東海的鐳同位素及其在水團(tuán)混合分析中的應(yīng)用[D];華東師范大學(xué);2007年
5 來(lái)濱;神經(jīng)元線(xiàn)粒體電子傳遞鏈復(fù)合體抑制對(duì)持續(xù)和瞬態(tài)鈉電流的影響及其機(jī)制[D];復(fù)旦大學(xué);2005年
6 孫東;馬兜鈴酸致大鼠腎臟和骨髓微血管損傷的研究[D];中國(guó)醫(yī)科大學(xué);2006年
7 王應(yīng)利;視網(wǎng)膜周細(xì)胞對(duì)微血管內(nèi)皮細(xì)胞生長(zhǎng)和緊密連接形成影響的研究[D];第四軍醫(yī)大學(xué);2006年
8 劉英;缺氧缺血性腦損傷新生大鼠心肌細(xì)胞凋亡、影響因素及1,6-二磷酸果糖保護(hù)作用的研究[D];吉林大學(xué);2007年
9 梁光萍;人臍靜脈內(nèi)皮細(xì)胞缺氧早期基因表達(dá)譜研究[D];第三軍醫(yī)大學(xué);2007年
10 李憶東;非基因毒應(yīng)激對(duì)小G蛋白R(shí)hoB表達(dá)的誘導(dǎo)作用、機(jī)制及生物學(xué)意義[D];第二軍醫(yī)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 夏琛;嘌呤核苷酸對(duì)模擬高原缺氧大鼠腦線(xiàn)粒體UCPs活性和表達(dá)的影響及其在呼吸氧耗與能量合成中的作用[D];第三軍醫(yī)大學(xué);2007年
2 徐瑜;UCPs在高原缺氧大鼠腦線(xiàn)粒體能量代謝中的作用[D];第三軍醫(yī)大學(xué);2008年
3 鄢衛(wèi)華;OMT對(duì)模擬高原缺氧大鼠腦線(xiàn)粒體呼吸氧耗與能量生成的影響及抗缺氧效應(yīng)研究[D];第三軍醫(yī)大學(xué);2012年
4 黃亮;瘦素在妊娠高血壓綜合征發(fā)病機(jī)制中作用的實(shí)驗(yàn)研究[D];第四軍醫(yī)大學(xué);2005年
5 王雙燕;人參皂苷Rg_2對(duì)體外培養(yǎng)的大鼠海馬缺氧神經(jīng)元的預(yù)防保護(hù)作用[D];青島大學(xué);2005年
6 畢玫榮;缺氧對(duì)低出生體重兒凝血功能的影響[D];山東大學(xué);2005年
7 顏曉慧;缺氧對(duì)大鼠星形膠質(zhì)細(xì)胞AQP4表達(dá)的影響[D];第一軍醫(yī)大學(xué);2005年
8 張明軍;急性超容血液稀釋對(duì)機(jī)體安全缺氧時(shí)限影響的探討[D];新疆醫(yī)科大學(xué);2005年
9 李黎;力竭性運(yùn)動(dòng)后鲇魚(yú)幼魚(yú)生理生化指標(biāo)的變動(dòng)[D];重慶師范大學(xué);2006年
10 王萍;腦紅蛋白基因在缺氧缺血性腦損傷多臟器中的表達(dá)及其機(jī)制的探討[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2005年
,本文編號(hào):2179638
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2179638.html