乘員人體骨骼系統(tǒng)參數(shù)化建模研究
本文選題:骨骼系統(tǒng) + 體型分析。 參考:《吉林大學(xué)》2014年碩士論文
【摘要】:隨著汽車(chē)行業(yè)的快速發(fā)展,人機(jī)工效分析得到了大量學(xué)者的關(guān)注,而大量準(zhǔn)確的人體生物力學(xué)模型是進(jìn)行人機(jī)分析的前提。只有基于大量的人體測(cè)量數(shù)據(jù),建立的合理的人體生物力學(xué)模型才能應(yīng)用到車(chē)輛的設(shè)計(jì)與分析中,例如H點(diǎn)范圍的設(shè)計(jì)與校核、視野分析和手伸及界面分析等。同時(shí)也為駕駛員的操作舒適性和乘員的乘坐方便性分析提供基礎(chǔ)數(shù)據(jù)。因此建立參數(shù)化的人體生物力學(xué)模型,通過(guò)參數(shù)調(diào)節(jié)產(chǎn)生大量的人體生物力學(xué)模型是汽車(chē)設(shè)計(jì)領(lǐng)域的熱點(diǎn)問(wèn)題。人體骨骼作為人體體表和肌肉模型的驅(qū)動(dòng)機(jī)構(gòu),建立可以縮放的人體骨骼模型是人體生物力學(xué)建模的基礎(chǔ),是汽車(chē)設(shè)計(jì)和仿真所必需的,也是人機(jī)工程設(shè)計(jì)與分析中必不可少的基礎(chǔ)模型。因此本文的研究目標(biāo)是建立準(zhǔn)確的人體骨骼系統(tǒng)模型,并研究多種骨骼縮放技術(shù),為以后進(jìn)行駕駛姿勢(shì)分析、視域分析、舒適性評(píng)價(jià)等提供數(shù)字化人體模型。 獲得大量的群體數(shù)據(jù)是建立參數(shù)化的人體骨骼模型的基礎(chǔ),F(xiàn)在通常采用的人體測(cè)量學(xué)方法操作繁瑣、費(fèi)時(shí)費(fèi)力,因此本文采取蒙特卡羅仿真的方法;谌后w人體尺寸數(shù)據(jù)的數(shù)字特征,仿真產(chǎn)生建模所需的人體尺寸數(shù)據(jù)樣本,產(chǎn)生的各項(xiàng)人體尺寸數(shù)據(jù)均服從正態(tài)分布,并對(duì)多維人體尺度的聯(lián)合分布特點(diǎn)進(jìn)行分析,便于后面建立人體尺度預(yù)測(cè)模型。 獲取人體測(cè)量數(shù)據(jù)樣本后,進(jìn)行體型分類(lèi)可以有效地區(qū)分個(gè)體的體型差異,提高人體尺度預(yù)測(cè)模型的精度。本文選取了五種不同的體型分類(lèi)方法,并對(duì)各種分類(lèi)方法的物理意義進(jìn)行說(shuō)明。選取能涵蓋盡可能多的人體體型特征,并保證各組內(nèi)體型差別不大,組間差別較大的一種體型分類(lèi)方法。體型分類(lèi)完成后,采用逐步線性回歸的方法,選取身高、體重和坐高作為主預(yù)測(cè)因子建立了兩層的人體尺度預(yù)測(cè)模型,并對(duì)此模型進(jìn)行了精度驗(yàn)證。通過(guò)分析不同百分位的人體尺寸預(yù)測(cè)值與樣本值的誤差,以及七個(gè)典型人體模型的20項(xiàng)宏觀人體尺寸的預(yù)測(cè)值與樣本值的誤差,對(duì)建立的預(yù)測(cè)模型進(jìn)行進(jìn)一步的驗(yàn)證。 參數(shù)化的人體骨骼系統(tǒng)模型作為驅(qū)動(dòng)骨骼系統(tǒng)模型的虛擬結(jié)構(gòu),是建立縮放的人體骨骼系統(tǒng)模型的基礎(chǔ)。因此本文首先基于人體尺度預(yù)測(cè)模型,建立了17段的人體骨架模型,可以驅(qū)動(dòng)詳細(xì)的人體骨骼系統(tǒng)完成姿勢(shì)和尺寸的調(diào)節(jié)。然后基于人體切片建立了詳細(xì)的骨骼模型,并參考美國(guó)Reed教授提出的人體骨骼裝配原理,完成了人體骨架模型和骨骼的裝配,最終建立了標(biāo)準(zhǔn)的人體骨骼模型。 利用建立的標(biāo)準(zhǔn)人體骨骼模型,本文研究了規(guī)則骨骼和不規(guī)則骨骼的縮放方法。對(duì)于規(guī)則骨骼的縮放,本文主要探討基于骨骼宏觀尺寸的比例縮放方法;對(duì)于不規(guī)則骨骼,本文主要研究基于徑向基函數(shù)的骨骼縮放方法,保留復(fù)雜骨骼的細(xì)部特征,并研究了影響不規(guī)則骨骼縮放精度的因素,并結(jié)合典型個(gè)體分析,說(shuō)明該方法能夠快速準(zhǔn)確地實(shí)現(xiàn)骨骼的非線性縮放。 本文通過(guò)選取大容量的人體尺寸樣板數(shù)據(jù)進(jìn)行體型分類(lèi),建立了人體尺度預(yù)測(cè)模型,并基于人體切片數(shù)據(jù)完成了人體骨骼系統(tǒng)建模。這種研究方法可以推廣應(yīng)用到人體體表和骨骼的生物力學(xué)建模過(guò)程中。同時(shí),研究了骨骼的縮放技術(shù),得到了合理的骨骼縮放方法,能夠快速地實(shí)現(xiàn)骨骼的準(zhǔn)確縮放。綜合上述研究成果,參數(shù)化的人體骨骼系統(tǒng)模型,能夠準(zhǔn)確合理地實(shí)現(xiàn)不同骨骼的快速縮放,為進(jìn)行人機(jī)工效分析提供了基礎(chǔ)模型。
[Abstract]:With the rapid development of the automobile industry, a large number of scholars pay attention to the ergonomics analysis, and a large number of accurate human biomechanical models are the precondition of man-machine analysis. Only a reasonable human body biomechanical model based on a large number of anthropometric data can be used in the design and analysis of vehicles, such as the H point range. Design and check, visual field analysis, hand extension and interface analysis, etc., and provide basic data for the driver's operational comfort and passengers' ride convenience analysis. Therefore, the establishment of a parameterized human biomechanical model and a large number of human biomechanical models through parameter adjustment are the hot issues in the field of automobile design. As the driving mechanism of body surface and muscle model, the establishment of a scalable human skeleton model is the basis of human biomechanical modeling. It is necessary for the design and Simulation of automobile. It is also an essential foundation model in the design and analysis of ergonomics. Therefore, the objective of this paper is to establish an accurate human skeleton system model. We also studied a variety of skeletal scaling techniques to provide a digital human model for future driving posture analysis, horizon analysis and comfort evaluation.
Obtaining a large number of group data is the basis of establishing a parameterized human skeleton model. Now the usual anthropometric method is complicated and time-consuming. Therefore, Monte Carlo simulation is adopted in this paper. Based on the digital features of the population size data, the simulation of the human body size data is produced by simulation. All human size data are subject to normal distribution, and the joint distribution characteristics of multi-dimensional human scale are analyzed, so as to facilitate the establishment of human body scale prediction model.
After obtaining the sample of human body measurement data, the body classification can effectively divide the body shape difference and improve the accuracy of the human body scale prediction model. In this paper, five different types of body classification methods are selected, and the physical significance of various classification methods are explained. A two layer model of human body size prediction was established by stepwise linear regression, and the accuracy of the model was verified. By analyzing the size of different percentile body dimensions, the body size of different percentile was analyzed. The error between the predicted value and the sample value, as well as the error between the predicted value and the sample value of the 20 macroscopic human body sizes of seven typical human body models, is further verified.
As the virtual structure of the skeleton system model, the parameterized human skeleton system model is the basis for establishing the zoomed human skeleton system model. This paper, firstly, based on the human body scale prediction model, established 17 segments of the human skeleton model, which can drive the detailed body bone system to complete the adjustment of the posture and size. The detailed skeleton model was established in the human slice, and the skeleton assembly of the human skeleton was completed with reference to the principle of the human skeleton assembly proposed by Professor Reed in the United States. Finally, the standard human skeleton model was established.
Using the established standard human skeleton model, the scaling method of regular skeleton and irregular skeleton is studied in this paper. For the scaling of regular bones, this paper mainly discusses the scaling method based on the macroscopic size of bone. For irregular bones, this paper mainly studies the skeleton scaling method based on radial basis function to preserve the complex skeleton. The factors that affect the scaling accuracy of irregular bones are studied and combined with typical individual analysis, it is shown that this method can quickly and accurately realize the nonlinear scaling of bone.
In this paper, the human body size prediction model is established by selecting large capacity body size sample data for body size, and the modeling of human skeleton system is completed based on human slice data. This research method can be applied to the biomechanical modeling of body surface and bone. At the same time, the scaling technique of bone is studied. A reasonable skeleton scaling method is obtained, which can quickly scale the bone. The parameterized human skeleton system model can accurately and reasonably realize the rapid zooming of different bones, and provides a basic model for the analysis of ergonomics.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:R336
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱巧妮,楊子田,王愛(ài)華,張文斌;我國(guó)華東地區(qū)與華北東北地區(qū)成年男子體型的比較研究[J];東華大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2004年01期
2 謝紅;周詳;曹萍;;基于模糊聚類(lèi)的上海地區(qū)未成年人體型分析[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
3 張紹祥,劉正津,譚立文,邱明國(guó),李七渝,李?lèi)?崔高宇,郭燕麗,楊曉萍,張偉國(guó),陳現(xiàn)紅,陳金華,丁仕義,陳偉,陸明,游箭,許忠信,王欲u&,鄧俊輝,唐澤圣;首例中國(guó)數(shù)字化可視人體完成[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2002年10期
4 楊允出;陳敏之;鄒奉元;;基于三維掃描數(shù)據(jù)的女性體型特征參數(shù)分析[J];紡織學(xué)報(bào);2009年08期
5 呂治國(guó);李焱;賀漢根;;基于Poser模型的三維人體建模方法[J];計(jì)算機(jī)工程;2008年13期
6 羅冠 ,郝重陽(yáng) ,張?chǎng)?,樊養(yǎng)余;虛擬人骨骼結(jié)構(gòu)的多剛體系統(tǒng)建模方法研究[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年06期
7 黃海明,劉金剛,高申玉;一種適合實(shí)時(shí)運(yùn)動(dòng)及變形的虛擬人建模方案[J];計(jì)算機(jī)應(yīng)用;2004年S2期
8 任金東;陳景輝;陸善彬;杜曉明;;汽車(chē)人機(jī)工程設(shè)計(jì)中人體數(shù)據(jù)應(yīng)用方法的研究[J];汽車(chē)工程;2013年06期
9 左力,李錦濤;用于實(shí)時(shí)變形的解剖學(xué)人體肌肉建模[J];系統(tǒng)仿真學(xué)報(bào);2003年07期
10 黎小沛,康曉東,舒衡生;數(shù)字化可視人體的構(gòu)建技術(shù)與應(yīng)用研究[J];影像技術(shù);2003年03期
,本文編號(hào):1856524
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1856524.html