天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

主動(dòng)脈壓力感受器編碼血壓信號(hào)的新機(jī)制

發(fā)布時(shí)間:2018-04-22 06:16

  本文選題:壓力感受器 + 血壓; 參考:《陜西師范大學(xué)》2010年博士論文


【摘要】: 壓力感受器如何感受血壓變化是感覺神經(jīng)生理學(xué)的一個(gè)重要問題。神經(jīng)生理學(xué)已經(jīng)建立壓力感受器通過調(diào)節(jié)動(dòng)作電位頻率進(jìn)而感受靜態(tài)和動(dòng)態(tài)壓力的基本概念:神經(jīng)脈沖發(fā)放平均頻率編碼了外界刺激的強(qiáng)度,脈沖發(fā)放的頻率數(shù)正比于刺激的強(qiáng)度值。由于感受器神經(jīng)末梢的解剖結(jié)構(gòu)非常微小,目前還不能直接通過實(shí)驗(yàn)觀察其感受電位。隨著神經(jīng)科學(xué)、非線性科學(xué)、信息技術(shù)和計(jì)算機(jī)技術(shù)的交叉融合,已經(jīng)形成了以理論和實(shí)驗(yàn)結(jié)合的神經(jīng)動(dòng)力學(xué)研究方向。利用非線性動(dòng)力學(xué)的概念,可以對(duì)生命中復(fù)雜的神經(jīng)放電模式、模式分岔(轉(zhuǎn)遷)規(guī)律進(jìn)行研究,為認(rèn)識(shí)復(fù)雜多變的神經(jīng)放電節(jié)律,揭示神經(jīng)動(dòng)態(tài)放電和動(dòng)態(tài)外界信息之間的關(guān)系,探討動(dòng)態(tài)放電如何編碼動(dòng)態(tài)外界信號(hào)的機(jī)制。 本文采用理論與實(shí)驗(yàn)相結(jié)合的研究方法,研究主動(dòng)脈弓壓力感受器編碼動(dòng)脈血壓信號(hào)這個(gè)具體的編碼環(huán)節(jié)的生物物理機(jī)制和生理學(xué)意義。通過對(duì)家兔和大鼠動(dòng)脈壓力感受器動(dòng)態(tài)、靜態(tài)血壓變化作用下,神經(jīng)單纖維放電模式及其轉(zhuǎn)遷規(guī)律的研究。實(shí)驗(yàn)發(fā)現(xiàn)了感受器的5種活動(dòng)狀態(tài):2類靜息(分別對(duì)應(yīng)低壓閾值和高壓閾值)和3類放電行為。放電行為是由血壓變化過程中跨越兩個(gè)閾值產(chǎn)生的。對(duì)應(yīng)動(dòng)態(tài)血壓,跨越低壓閾值,感受器在收縮壓放電;跨越高壓閾值,感受器表現(xiàn)為在收縮壓放電的反常簇放電;位于兩個(gè)閾值之間,持續(xù)放電。對(duì)應(yīng)靜壓力,跨越低壓閾值,感受器on-off放電;跨越高壓閾值,感受器on-off放電或整數(shù)倍放電;位于閾值之間,周期一放電并隨壓力增加頻率加快。實(shí)驗(yàn)靜壓力下出現(xiàn)了on-off放電和整數(shù)倍放電等非周期放電模式,模型仿真了這類結(jié)果,提示它們分別對(duì)應(yīng)跨越超臨界Hopf分岔和亞臨界Hopf分岔的動(dòng)力學(xué)行為。神經(jīng)動(dòng)力學(xué)的應(yīng)用,為理解實(shí)驗(yàn)現(xiàn)象的機(jī)理提供了有力的理論依據(jù)。 主要結(jié)果有 1.實(shí)驗(yàn)獲得了隨動(dòng)態(tài)平均血壓變化的感受器神經(jīng)單纖維的放電模式轉(zhuǎn)遷規(guī)律。隨著平均壓力升高,感受器神經(jīng)單纖維放電依次經(jīng)歷低壓靜息-收縮壓放電-連續(xù)放電-舒張壓放電的“反常簇放電”-高壓靜息。識(shí)別了感受器神經(jīng)單纖維的5種活動(dòng)狀態(tài):3種放電和2種靜息。在多例標(biāo)本發(fā)現(xiàn)了新的“反常簇放電”現(xiàn)象,并認(rèn)識(shí)到“反常簇放電”存在于高壓力區(qū)間,其機(jī)理是“去極化阻滯”。 2.實(shí)驗(yàn)觀察了靜壓力下感受器神經(jīng)單纖維放電模式的轉(zhuǎn)遷規(guī)律。隨著靜壓力升高,感受器神經(jīng)單纖維放電依次經(jīng)歷了低壓靜息-on-off放電-持續(xù)周期一放電-on-off放電或者整數(shù)倍放電-高壓靜息。和動(dòng)態(tài)平均血壓下的轉(zhuǎn)遷規(guī)律類似,感受器的2種靜息分別對(duì)應(yīng)了低壓和高壓閾值。其中非周期的on-off放電和整數(shù)倍放電,提示在跨越閾值時(shí),感受器放電遵循動(dòng)力學(xué)的Hopf分岔機(jī)制。進(jìn)而利用神經(jīng)動(dòng)力學(xué)的分岔理論可以解釋感受器編碼血壓信號(hào)的機(jī)理。 3.構(gòu)建了基于血壓壓力感受器感知血壓過程的生物寫實(shí)數(shù)學(xué)模型。該模型利用不同的函數(shù),對(duì)應(yīng)血管區(qū)、感受器區(qū)和編碼區(qū),分別仿真了血管壁的機(jī)械形變、感受器局部電位產(chǎn)生和編碼區(qū)動(dòng)作電位產(chǎn)生,進(jìn)而構(gòu)成完整的感受器數(shù)學(xué)模型。調(diào)節(jié)與實(shí)驗(yàn)相一致的參數(shù)變化,研究了該數(shù)學(xué)模型在靜壓力和動(dòng)態(tài)血壓變化下的放電模式及其轉(zhuǎn)遷規(guī)律。 4.數(shù)學(xué)模型仿真結(jié)果揭示了放電節(jié)律的轉(zhuǎn)遷規(guī)律的機(jī)制。隨著靜壓力的增加,確定性模型會(huì)表現(xiàn)出靜息、連續(xù)放電、靜息的轉(zhuǎn)遷歷程?紤]噪聲因素的作用,靜壓力增加時(shí),放電節(jié)律會(huì)表現(xiàn)出靜息、on-off放電、連續(xù)均勻放電、整數(shù)倍放電、靜息的轉(zhuǎn)遷歷程,與實(shí)驗(yàn)中靜壓力增加的現(xiàn)象一致。在動(dòng)壓力作用下,隨著平均壓力的增加,放電會(huì)經(jīng)歷靜息、血壓峰值放電谷值不放電、連續(xù)放電、血壓峰值不放電血壓谷值放電、靜息的歷程,與實(shí)驗(yàn)一致。 5.對(duì)數(shù)學(xué)模型進(jìn)行分析,隨著靜壓力的增加,從靜息變到放電對(duì)應(yīng)亞臨界Hopf分岔,從連續(xù)放電再到靜息是超臨界Hopf分岔。靜壓力下的on-off放電和整數(shù)倍放電是噪聲分別在超臨界和亞臨界Hopf點(diǎn)附件誘發(fā)的隨機(jī)節(jié)律。而“反常簇放電”是由于在動(dòng)壓力作用下電活動(dòng)行為因?yàn)檠獕簤毫υ诳缭紿opf分岔點(diǎn)引起的:血壓峰值處于靜息而血壓谷值時(shí)處于放電引起的。這就從理論上解釋了這些新節(jié)律的產(chǎn)生的動(dòng)力學(xué)機(jī)制。。 上述結(jié)果表明,血壓信號(hào)的改變會(huì)引起感受器興奮性的變化,也就是去極化電流的動(dòng)態(tài)變化。使得壓力感受器的放電節(jié)律在以去極化電流作為分岔參數(shù)的放電節(jié)律靜態(tài)分岔結(jié)構(gòu)中,在平均血壓對(duì)應(yīng)的位置附近按照血壓信號(hào)的時(shí)間歷程“動(dòng)態(tài)游走”,形成動(dòng)態(tài)放電節(jié)律;動(dòng)態(tài)放電節(jié)律的時(shí)間歷程與血壓信號(hào)的時(shí)間動(dòng)態(tài)歷程有較好的對(duì)應(yīng)。利用非線性動(dòng)力學(xué)分岔理論不僅從理論上揭示了血壓信號(hào)引起感受器神經(jīng)放電的機(jī)理,而且可以在包含放電頻率在內(nèi)的多個(gè)層面上,在理論層次上建立動(dòng)態(tài)血壓信號(hào)與相應(yīng)動(dòng)態(tài)放電之間的聯(lián)系,進(jìn)一步認(rèn)識(shí)了感受器的編碼機(jī)制。
[Abstract]:How bareporeceptor feelings of blood pressure change is an important problem in sensory neurophysiology. Neurophysiology has established the basic concept that bareporeceptor can feel static and dynamic pressure by regulating the frequency of action potential, which encodes the intensity of external stimuli, and the frequency of pulse distribution is proportional to the number of pulses. As the anatomical structure of the nerve endings of the receptor is very small, the sensory potential can not be observed directly by experiment. With the cross fusion of neuroscience, nonlinear science, information technology and computer technology, the research direction of the combination of theory and experiment has been formed. The concept of dynamics can be used to study the complex pattern of neural discharge and pattern bifurcation (transfer) in life, to understand the complex and changeable rhythms of neural discharge, to reveal the relationship between the dynamic discharge of the nerve and the dynamic external information, and to explore the mechanism of how dynamic discharge encodes the dynamic external signal.
This paper studies the biophysical and physiological significance of the specific coding link of aortic arch baroreceptor encoding arterial pressure signal by combining theoretical and experimental methods. Through the dynamic and static blood pressure changes in rabbit and rat arterial baroreceptor, the pattern of neural single fiber discharge and its transfer rules are used. The experiment found 5 active states of the receptor: 2 types of resting (corresponding to low pressure threshold and high pressure threshold respectively) and 3 types of discharge behavior. The discharge behavior is produced by two thresholds in the process of blood pressure change. It corresponds to the dynamic blood pressure, across the low pressure threshold, the receptor in the systolic pressure discharge, the threshold of the high pressure, the receptor performance. An anomalous cluster discharge in a systolic discharge; between two thresholds, continuous discharge. Corresponding static pressure, crossing low pressure threshold, receptor on-off discharge; crossing high pressure threshold, receptor on-off discharge or integer multiple discharge; between threshold, periodic discharge and increasing frequency with pressure force. Under experimental static pressure, on-off appears. The models of non periodic discharge, such as discharge and integer discharge, have simulated these results, suggesting that they correspond to the dynamic behavior of crossing over the supercritical Hopf bifurcation and subcritical Hopf bifurcation, and the application of neural dynamics provides a powerful theoretical basis for understanding the mechanism of the experimental phenomena.
The main results are
The 1. experiment obtained the change rule of the discharge mode of the sensory nerve single fiber with the dynamic mean blood pressure change. With the increase of the average pressure, the single fiber discharge of the receptor nerve underwent the "abnormal cluster discharge" - the high pressure resting with the low pressure resting - systolic pressure discharge - the continuous discharge diastolic discharge, and identified the 5 of the receptor nerve single fiber. Activity state: 3 kinds of discharge and 2 kinds of resting. A new phenomenon of "abnormal cluster discharge" is found in several specimens, and it is recognized that "abnormal cluster discharge" exists in the high pressure range, and its mechanism is depolarization block.
2. the transition law of the single fiber discharge mode of the receptor nerve under static pressure was observed under the static pressure. With the increase of static pressure, the single fiber discharge of the receptor nerve experienced the low pressure resting -on-off discharge - the continuous cycle one discharge -on-off discharge or the integer multiple discharge - the high pressure resting. The 2 kinds of resting rest respectively correspond to the low pressure and high pressure threshold, in which the non periodic on-off discharge and the integer multiple discharge indicate that the Hopf bifurcation mechanism of the receptor discharge follows the dynamics when the threshold is crossed. Then the mechanism of the blood pressure signal encoded by the receptor can be explained by the bifurcation theory of the neural dynamics.
3. a biorealistic mathematical model is constructed based on the blood pressure baroreceptor, which uses different functions, corresponding to the vascular area, the receptor area and the coding region, to simulate the mechanical deformation of the blood vessel wall, the local potential generation of the receptor and the generation of the action potential of the coded region, and then form a complete mathematical model of the receptor. Adjusting the parameter changes consistent with the experiment, we studied the discharge pattern and transition rule of the mathematical model under static pressure and dynamic blood pressure.
4. the simulation results of the mathematical model reveal the mechanism of the transition law of the discharge rhythm. With the increase of static pressure, the deterministic model will show resting, continuous discharge, and resting transition course. Considering the effect of the noise factors and the increase of the static pressure, the discharge rhythm will show resting, on-off discharge, continuous uniform discharge, integer discharge, resting. Under the action of dynamic pressure, with the increase of average pressure, the discharge will go through resting, the peak discharge valley of the blood pressure peak does not discharge, continuous discharge, the peak of blood pressure does not discharge the value of the blood pressure Valley, and the resting course is consistent with the experiment.
5. analysis of the mathematical model, with the increase of static pressure, from resting to discharge to subcritical Hopf bifurcation, from continuous discharge to rest to resting is a supercritical Hopf bifurcation. The on-off discharge and the integer multiple discharge under static pressure are random rhythms induced by the noise at supercritical and subcritical Hopf points respectively. The activity of electrical activity under the action of pressure is caused by the pressure of blood pressure across the Hopf bifurcation point: the peak of blood pressure is at the resting and the value of the blood pressure Valley at the discharge. This explains the kinetic mechanism of these new rhythms.
The above results show that the change of blood pressure signal causes the change in the excitatory of the receptor, that is the dynamic change of the depolarization current. It makes the discharge rhythm of the baroreceptor in the static bifurcation structure of the discharge rhythm with depolarization current as a bifurcation parameter, and the time course of the mean blood pressure near the corresponding position according to the blood pressure signal. "Dynamic walk" forms a dynamic discharge rhythm, and the time history of the dynamic discharge rhythm corresponds well with the time dynamic process of the blood pressure signal. The theory of nonlinear dynamics bifurcation not only reveals the mechanism of the nerve discharge caused by the blood pressure signal, but also can be in the multiple layers including the discharge frequency. On the theoretical level, the relationship between ambulatory blood pressure signals and corresponding dynamic discharges is established to further understand the coding mechanism of receptors.

【學(xué)位授予單位】:陜西師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2010
【分類號(hào)】:R35

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 古華光,任維,陸啟韶,劉鋼,沈羨云,孟京瑞;復(fù)雜度在立位期間心率變異分析中的應(yīng)用[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2001年03期

,

本文編號(hào):1785961

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1785961.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e9df9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美精品在线播放一区二区| 91精品国产品国语在线不卡| 久久精品色妇熟妇丰满人妻91| 国产成人在线一区二区三区| 国产欧美一区二区久久| 丰满熟女少妇一区二区三区| 欧美一级日韩中文字幕| 九七人妻一区二区三区| 亚洲专区中文字幕视频| 久久久精品日韩欧美丰满| 中文字幕区自拍偷拍区| 欧美亚洲另类久久久精品| 日本高清一区免费不卡| 白白操白白在线免费观看| 91精品国产综合久久不卡| 不卡中文字幕在线免费看| 日韩精品视频一二三区| 日韩人妻中文字幕精品| 亚洲熟妇中文字幕五十路| 亚洲日本韩国一区二区三区| 精品国产亚洲免费91| 国产又长又粗又爽免费视频| 欧美日韩精品视频在线| 亚洲av首页免费在线观看| 国产中文字幕久久黄色片| 日韩和欧美的一区二区三区| 国产精品久久熟女吞精| 在线观看免费无遮挡大尺度视频| 国产av熟女一区二区三区四区 | 欧美日韩精品综合一区| 国产伦精品一一区二区三区高清版 | 日本不卡在线视频中文国产| 欧美一区二区在线日韩| 国产精品一区二区三区激情| 亚洲一区二区三区有码| 日本妇女高清一区二区三区| 欧美日韩校园春色激情偷拍| 美女被后入福利在线观看| 亚洲欧美日韩在线看片| 日本久久中文字幕免费| 国产精品免费视频专区|