基于場(chǎng)放大富集的毛細(xì)管凝膠電泳紫外檢測(cè)核酸靈敏度研究
本文關(guān)鍵詞: 毛細(xì)管電泳 DNA 基質(zhì)場(chǎng)放大 柱頭場(chǎng)放大 電動(dòng) 壓力 靈敏度 出處:《華南理工大學(xué)》2010年碩士論文 論文類型:學(xué)位論文
【摘要】: 毛細(xì)管電泳技術(shù)具有高效,快速,微量,自動(dòng),高通量,清潔無污染等特點(diǎn),自產(chǎn)生以來便獲得廣泛的關(guān)注和應(yīng)用,但在應(yīng)用過程中,其有限的檢測(cè)光學(xué)路程及有限長度所造成的微小進(jìn)樣量使其靈敏度低,特別是配合常用的UV檢測(cè)器時(shí),靈敏度問題更是成為制約其應(yīng)用的一個(gè)關(guān)鍵因素。因此,針對(duì)其靈敏度問題展開研究已成為一個(gè)熱點(diǎn),其中樣品富集技術(shù)以操作簡單,不需昂貴的儀器設(shè)備,靈敏度高成為研究熱點(diǎn)。而場(chǎng)放大技術(shù)更是以其成熟的理論基礎(chǔ),簡單的操作模式,高的靈敏度效果成為眾多富集技術(shù)中應(yīng)用最多的技術(shù)之一,具有極高的實(shí)際應(yīng)用價(jià)值。 目前,在CE分析DNA領(lǐng)域,靈敏度問題尤其突出,由于DNA中堿基所形成的雙鍵具有較低的紫外吸收,而常規(guī)的UV檢測(cè)器靈敏度低。CE本身又存在有限內(nèi)徑所造成的UV吸收光程短和有限長度造成的進(jìn)樣量低等固有缺陷。這樣就給CE在核酸分析領(lǐng)域的應(yīng)用造成了極大的困難。導(dǎo)致在DNA CE分析領(lǐng)域,目前大多研究者采用熒光檢測(cè)模式來解決靈敏度問題。而熒光檢測(cè)器本身價(jià)格昂貴,樣品需標(biāo)記熒光引物或嵌合熒光染料,過程繁瑣,費(fèi)用高,大部分的染料具有一定的毒性(如EB),且對(duì)于目前廣泛使用的UV分析圖譜,熒光圖譜必然給數(shù)據(jù)的統(tǒng)一化應(yīng)用帶來困難。因此,熒光方式尚不能大規(guī)模普及應(yīng)用。 所以,本實(shí)驗(yàn)使用場(chǎng)放大技術(shù)提高CGE-UV檢測(cè)核酸的靈敏度,使其在簡便的情況下實(shí)現(xiàn)對(duì)微量核酸的分析,為擴(kuò)大CE-UV在分子生物學(xué)領(lǐng)域的應(yīng)用奠定基礎(chǔ)。 本論文的研究工作如下: 1.綜述了包括場(chǎng)放大、pH介導(dǎo)的堆積、等速電泳富集、酸堆積、移動(dòng)化學(xué)反應(yīng)邊界等以電泳為基礎(chǔ)的富集和Sweeping、單滴劑微抽提、SPE等以色譜為基礎(chǔ)的富集,還包括一些根據(jù)新的理論、機(jī)制和特殊設(shè)計(jì)發(fā)展起來的富集模式,如陰/陽離子選擇性耗盡注射-Sweeping、臨態(tài)捕獲-釋放堆積、膠束坍塌、移動(dòng)反應(yīng)邊界、甘油-鹽介導(dǎo)的堆積、醋酸纖維素膜包裹的多孔性接合部等新的富集模式。眾多的富集技術(shù)對(duì)于克服毛細(xì)管的靈敏度問題,促進(jìn)其在分析化學(xué)領(lǐng)域的應(yīng)用都具有極大的實(shí)際價(jià)值。 2.采用水柱法場(chǎng)擴(kuò)大堆積提高CGE-UV分析核酸靈敏度。以已知濃度的DNAMarker為標(biāo)準(zhǔn)樣品,TE緩沖液遞度稀釋,壓力進(jìn)樣前加一段去離子水柱(0.5psi,20s),在對(duì)分離度無明顯影響下,將壓力進(jìn)樣時(shí)間延長至0.5psi,990s,與常規(guī)的壓力進(jìn)樣(0.5psi,10s)相比,靈敏度提高了94.4倍。與時(shí)間延長后的壓力進(jìn)樣(0.5psi,90s)相比,靈敏度提高8.2倍,達(dá)到最低檢測(cè)總濃度1ng/μL,檢測(cè)限降至80ng/mL(S/N=3),比前人報(bào)道的7ng/μL檢測(cè)限提高87.5倍。 3.鑒于壓力法場(chǎng)放大盡管極大提高了進(jìn)樣量,但由于進(jìn)樣時(shí)間的增加及存于管中過長的樣品柱對(duì)分離場(chǎng)強(qiáng)的影響,造成了分析時(shí)間的增加,且水柱法場(chǎng)放大堆積的靈敏度仍然有限。因此,嘗試采用基質(zhì)場(chǎng)放大進(jìn)一步提高CE對(duì)核酸的檢測(cè)靈敏度;|(zhì)場(chǎng)放大將單個(gè)DNA條帶的檢測(cè)限降至40ng/mL以下。比壓力進(jìn)樣的檢測(cè)限(0.5psi,90s)和場(chǎng)擴(kuò)大下壓力進(jìn)樣(0.5psi,20s水,990s進(jìn)樣)的靈敏度分別高65倍和8倍。在同一濃度,電動(dòng)進(jìn)樣具有比壓力進(jìn)樣更高的靈敏度。然而,單獨(dú)依靠基質(zhì)場(chǎng)放大形式的靈敏度仍然較低(電動(dòng)進(jìn)樣時(shí)間很難超過30s)。存在高場(chǎng)強(qiáng)下樣品溶液與管口的BGE交界面很容易受到擾動(dòng),管口樣品區(qū)帶的擾動(dòng)、樣品溶液的擾動(dòng)影響到分離效率,如造成峰展寬、電動(dòng)時(shí)間受限制、結(jié)果的重復(fù)性不好等問題。低離子強(qiáng)度樣品溶液在高場(chǎng)強(qiáng)下的EOF與管內(nèi)BGE EOF的不匹配也會(huì)對(duì)這種方式的靈敏度效果產(chǎn)生影響。如進(jìn)樣電流不穩(wěn)定,區(qū)帶變形展寬,基線漂移嚴(yán)重等。因此,實(shí)驗(yàn)嘗試將柱頭場(chǎng)放大和基質(zhì)場(chǎng)放大聯(lián)合使用以克服上述不足。 4.聯(lián)合使用基質(zhì)場(chǎng)放大和柱頭場(chǎng)放大進(jìn)一步提高CGE-UV分析DNA的靈敏度。方法建立后以PCR后的高鹽DNA樣品驗(yàn)證方法的可靠性。將DNA樣品稀釋達(dá)40萬倍,與普通的電動(dòng)進(jìn)樣(10KV,10s)和延長的壓力進(jìn)樣(0.5psi,90s)相比,對(duì)峰形和峰寬無明顯影響下,將電動(dòng)進(jìn)樣的時(shí)間延至(10KV,420s),離子強(qiáng)度降至(1.5%TE),柱頭場(chǎng)放大靈敏度分別提高了約28和56倍,聯(lián)合使用基質(zhì)場(chǎng)放大和柱頭場(chǎng)放大后,靈敏度分別提高3760和7548倍。DNA的檢測(cè)限達(dá)0.1ng/mL(S/N=3,CGE-FASI-UV),接近XU Z等報(bào)道的0.09ng/mL的DNA檢測(cè)限(CGE—tITP—LIF)。在未經(jīng)脫鹽純化下,以建立的方法分析PCR后的DNA產(chǎn)物獲得了極高的靈敏度(分別比普通的壓力進(jìn)樣和電動(dòng)進(jìn)樣提高50477倍和33354倍)。驗(yàn)證了聯(lián)合使用基質(zhì)場(chǎng)放大和柱頭場(chǎng)放大具有更高的靈敏度效果。同時(shí),為評(píng)價(jià)建立的場(chǎng)放大技術(shù)的穩(wěn)定性及在DNA定量方面的能力。設(shè)定條件(2%TE為樣品離子強(qiáng)度,0.5psi 20s水柱,10KV,210s進(jìn)樣),其線性范圍良好(0.4-20ng/mL),相關(guān)系數(shù)達(dá)0.9992,峰面積日內(nèi)和日間精密度分別為3.65%、2.83%、1.67%和4.95%、3.06%、5.84%,樣品峰面積和遷移時(shí)間的RSD分別為3.86%和0.28%。顯示了良好的定性及定量效果。此方法操作簡單,靈敏度高,也適用于高鹽微量的DNA樣品分析,具有極高的實(shí)際應(yīng)用價(jià)值,必將促進(jìn)毛細(xì)管電泳在核酸微量分析領(lǐng)域的應(yīng)用。
[Abstract]:Capillary electrophoresis technique is efficient, rapid, trace, automatic, high throughput, clean and no pollution, since they received extensive attention and application, but in the application process, the small sample size limited detection optical distance and the finite length caused by the low sensitivity, especially with UV detector commonly, sensitivity problem is becoming a key factor in restricting its application. Therefore, research has become a hot spot for its sensitivity, the sample enrichment technology is simple, does not need expensive equipment, high sensitivity has become a research hotspot. The field amplification technology with its mature the theoretical basis, simple mode of operation, the effect of high sensitivity as many enrichment technology in one of the most widely used technology, has very high practical value.
At present, in the CE analysis of the DNA field, the sensitivity problem is particularly prominent absorption due to the formation of DNA base double bonds with low UV, while the conventional UV detector low sensitivity of.CE itself and the defects caused by UV finite diameter and short length optical path caused by the limited amount of sample. This gave low inherent the application of CE in nucleic acid analysis has caused great difficulties. In DNA CE analysis field, most researchers used fluorescence detection model to solve the sensitivity problem. And the fluorescence detector is expensive, sample fluorescence labeled primers or chimeric fluorescent dyes, complicated process and high cost, most of the dye has certain toxicity (such as EB), and the widely used UV analysis of fluorescence spectra, inevitably bring difficulties to the unification of the application data. Therefore, there are still no large-scale popularization and application of fluorescence method.
Therefore, the field amplification technology is used to improve the sensitivity of nucleic acid detection by CGE-UV, so that it can analyze trace nucleic acids in a simple way, and lay a foundation for expanding the application of CE-UV in molecular biology.
The research work of this paper is as follows:
1. reviews including field amplification, accumulation of pH mediated, isotachophoresis preconcentration, acid accumulation, moving chemical reaction boundary on the basis of electrophoresis and enrichment of Sweeping, single drop micro extraction, enrichment by chromatography based SPE, including some according to the new theory, mechanism and special design enrichment mode development together, such as Yin / cation selectiveexhaustive injection of -Sweeping micelle critical state capture release accumulation, collapse, moving reaction boundary, the accumulation of glycerol salt mediated, enrichment model package cellulose acetate membrane porous junction. Many new enrichment techniques to overcome the sensitivity problem of capillary, which has promoted great practical value in the application field of analytical chemistry.
2. by water accumulation increased CGE-UV nucleic acid analysis method to expand the sensitivity. With known concentrations of DNAMarker as the standard sample, TE buffer gradient dilution, pressure sampling before a deionized water (0.5psi, 20s), in has no obvious effect on the separation degree, the sampling time is extended to 0.5psi, 990s, and conventional pressure injection (0.5psi, 10s) compared the sensitivity increased by 94.4 times. With prolonged pressure after injection (0.5psi, 90s) compared to the sensitivity increased by 8.2 times, the minimum detection concentration in 1ng/ L, the detection limit to 80ng/mL (S/N=3), 7ng/ L than previous reports of the detection limit increased by 87.5 times.
3. in view of the pressure field enlarge despite greatly increased the amount of sample, but due to the influence of sample increase and stored in pipe is too long sampling time on the separation of field intensity, resulting in increased analysis time, sensitivity and water field amplified stacking is limited. Therefore, try to use the matrix field to further improve the detection sensitivity of CE amplification the matrix field of nucleic acids. A single DNA band to enlarge the detection limit below 40ng/mL. The detection limit of injection pressure ratio (0.5psi, 90s) and expand the field under pressure injection (0.5psi, 20s water, 990s injection) the sensitivity were 65 times and 8 times. At the same concentration, electric the sample has a higher sensitivity than the pressure sampling. However, relying solely on the sensitivity matrix field amplified form is still low (electric injection time is less than 30s). The presence of BGE sample solution and nozzle under high electric field interface is very susceptible to disturbance, nozzle Disturbed sample zone, sample solution disturbance affect the separation efficiency, such as peak broadening, electric time limit problem of the repeatability of the results is not good. Also the sensitivity effect on the way the influence does not match the low ionic strength of sample solution and EOF tube under high voltage in BGE EOF such as injection current instability, deformation zone broadening, baseline drift is serious. Therefore, the attempt to stigma field amplification and matrix field amplification in combination to overcome these shortcomings.
4. the combination of matrix field amplification and stigma field amplification further improve the sensitivity analysis of CGE-UV DNA method. After the establishment of DNA samples with high salt PCR verification method of reliability. The DNA sample was diluted 400 thousand times, and general electric injection (10KV, 10s) and prolonged pressure injection (0.5psi, 90s) compared to the peak shape and peak width had no significant effect, extended the electrokinetic injection to (10KV, 420s), ionic strength (1.5%TE), stigma to field amplified sensitivity were improved by about 28 and 56 times, the combination of matrix field amplification and stigma field amplification, 3760 and 7548 respectively to improve detection sensitivity.DNA times the limit of 0.1ng/mL (S/N=3, CGE-FASI-UV), DNA XU Z reported the close to detection limit of 0.09ng/mL (CGE tITP LIF). In the desalination and purification, to establish the analysis method of DNA products after PCR was a high sensitivity (respectively than normal pressure sampling and Electric injection increased 50477 times and 33354 times). To verify the combination of matrix field amplification effect and higher sensitivity with stigma field amplification. At the same time, the stability of field amplification technology is established and evaluation ability in quantitative DNA. The conditions set (2%TE for the samples of ionic strength, 0.5psi 10KV, 210s 20s column sample), the good linear range (0.4-20ng/mL), the correlation coefficient was 0.9992, the peak area of the intra day and inter day precision were 3.65%, 2.83%, 1.67% and 4.95%, 3.06%, 5.84%, peak area and migration time were 3.86% and 0.28%. RSD showed good qualitative and quantitative effect of this method. Simple operation, high sensitivity and is suitable for the analysis of trace DNA in high salt samples, has high practical value, will promote the application of capillary electrophoresis in analysis of trace nucleic acid field.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2010
【分類號(hào)】:R341
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王亞榮;李晶晶;吳志勇;范俊剛;方芳;;多孔導(dǎo)電膜刻蝕方法的改進(jìn)及其在毛細(xì)管電泳蛋白進(jìn)樣濃縮中的應(yīng)用[J];分析化學(xué);2008年07期
2 陳素清;梁華定;黃微雅;韓德滿;王習(xí)梅;;流動(dòng)注射在線預(yù)富集-高效液相色譜法測(cè)定水中的4-壬基酚和雙酚A[J];分析化學(xué);2008年07期
3 連冬生;張相年;賀寶霞;趙樹進(jìn);韓麗萍;;毛細(xì)管凝膠電泳紫外檢測(cè)核酸靈敏度[J];分析化學(xué);2010年08期
4 連冬生;張相年;趙樹進(jìn);;毛細(xì)管場(chǎng)放大技術(shù)研究進(jìn)展[J];分析儀器;2011年02期
5 劉利紅;;毛細(xì)管電泳柱上富集技術(shù)原理及應(yīng)用[J];廣州化工;2009年09期
6 閆宏遠(yuǎn),楊更亮,趙燕燕,岳強(qiáng),陳義;膠束電動(dòng)色譜在線推掃技術(shù)測(cè)定血液中環(huán)丙沙星含量[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年06期
7 肖軍平,廖祥坤,周慶祥;毛細(xì)管電泳柱上富集技術(shù)研究進(jìn)展[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期
8 周志貴;李珉;白玉;劉虎威;;毛細(xì)管電泳-質(zhì)譜聯(lián)用技術(shù)的新進(jìn)展[J];色譜;2009年05期
9 張良;許楊;李燕萍;;膠束電動(dòng)毛細(xì)管色譜法檢測(cè)紅曲米中的莫納可林K[J];色譜;2010年04期
10 劉勝權(quán);汪海林;;毛細(xì)管電泳在線聚焦原理、技術(shù)及應(yīng)用[J];色譜;2011年09期
相關(guān)博士學(xué)位論文 前10條
1 李平靜;微萃取與在柱富集毛細(xì)管電泳聯(lián)用技術(shù)及其在元素形態(tài)分析中的應(yīng)用[D];武漢大學(xué);2010年
2 吳秋華;液相微萃取前處理結(jié)合高效液相色譜法在農(nóng)藥殘留分析中的應(yīng)用[D];河北農(nóng)業(yè)大學(xué);2011年
3 朱華東;毛細(xì)管電泳在線富集新技術(shù)及新型FI-CE體系研究[D];蘭州大學(xué);2011年
4 甘婷婷;毛細(xì)管電泳試樣在線富集新方法研究[D];重慶大學(xué);2010年
5 馮艾榮;整體柱預(yù)富集及其與毛細(xì)管電泳聯(lián)用技術(shù)的研究[D];武漢大學(xué);2010年
6 趙燕燕;在線Sweeping富集技術(shù)和前沿分析法在藥代動(dòng)力學(xué)研究中的應(yīng)用[D];河北大學(xué);2003年
7 蔡增軒;微流控芯片液液萃取系統(tǒng)的研究[D];浙江大學(xué);2005年
8 許雪琴;某些天然藥物中活性成分的化學(xué)發(fā)光、電化學(xué)及毛細(xì)管電泳行為研究[D];福州大學(xué);2006年
9 胡艷云;食品中有害殘留物檢測(cè)的前處理技術(shù)與色譜分析技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2006年
10 劉利紅;FI-CE在測(cè)定草藥活性組分中新方法的研究及應(yīng)用[D];蘭州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 崔哲;麻保沙星的藥代動(dòng)力學(xué)研究[D];河北科技大學(xué);2011年
2 關(guān)鑫;洛伐他汀與其代謝物體內(nèi)定量分析方法及藥代動(dòng)力學(xué)研究[D];吉林大學(xué);2011年
3 彭龍飛;毛細(xì)管電泳電化學(xué)發(fā)光檢測(cè)麻黃堿類藥物及檢測(cè)器的改進(jìn)研究[D];信陽師范學(xué)院;2011年
4 劉芬;氧化鋯基反相高效液相色譜固定相的制備與評(píng)價(jià)[D];天津大學(xué);2010年
5 張俊磊;基于毛細(xì)管電泳微富集、微分離新技術(shù)的研究[D];天津大學(xué);2010年
6 胡大春;毛細(xì)管電泳在線富集技術(shù)在藥物分析中的應(yīng)用研究[D];廣西工學(xué)院;2011年
7 杜秀珍;在柱富集二維毛細(xì)管電泳分離方法研究及其應(yīng)用[D];青島科技大學(xué);2011年
8 李保會(huì);在線富集技術(shù)在藥物中的應(yīng)用及假峰現(xiàn)象的研究[D];河北大學(xué);2002年
9 閆宏遠(yuǎn);在線富集技術(shù)在藥物分析中的應(yīng)用[D];河北大學(xué);2004年
10 段鴻鶯;幾種興奮劑的分子光譜檢測(cè)新方法研究[D];武漢大學(xué);2004年
,本文編號(hào):1492770
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1492770.html