信用評價中區(qū)分度問題與對策研究
[Abstract]:Credit evaluation should essentially be a mechanism to help investors eliminate or reduce asymmetric information, so as to provide reference information with investment value and risk early warning value. Credit evaluation should not only reflect the credit status of the assessed objects truthfully, but also facilitate market participants to distinguish the assessed objects, provide effective reference information for them, and help them make correct investment decisions, which requires credit evaluation to have a certain distinction. How to achieve effective distinction will be the main research issue in this paper. This paper is based on an in-depth analysis of the existing credit evaluation system, found two types of discrimination problems, so the main research contents of this paper are as follows:
Firstly, when differentiating multiple credit evaluation objects, especially when sorting or choosing multiple evaluation objects with similar credit level, the existing indicators in the evaluation process may be considered ineffective or indistinguishable for distinguishing the evaluation results of the evaluated objects. As an example, we will screen the indices which lack distinction, so as to distinguish the evaluated objects accurately. How to realize the effective screening process will be one of the main problems in this paper. In this paper, the index system of high-tech enterprises is optimized and screened by taking credit evaluation of high-tech enterprises as an example, so as to play a certain role in optimizing the credit level of selected high-tech enterprises.
Secondly, because the rating agencies usually use linear method to deal with the original index data, this often leads to the problem of insufficient score differentiation. The score of the target with distinction can greatly affect the distinction of the final rating results. Compared with the traditional linear method, the S-curve method can better reflect the distinction of the target value of each evaluation object. At the same time, it enlarges the difference of the final evaluation result, and makes the evaluation object of each grade get a reasonable credit score. An important supplement to the method of scoring indicators.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F830.59
【參考文獻】
相關(guān)期刊論文 前10條
1 張鵬;曹陽;;上市公司信用風(fēng)險度量研究[J];財經(jīng)問題研究;2012年03期
2 夏立明;宗恒恒;孟麗;;中小企業(yè)信用風(fēng)險評價指標體系的構(gòu)建——基于供應(yīng)鏈金融視角的研究[J];金融論壇;2011年10期
3 遲國泰;趙光軍;李剛;;基于逼近理想點和G1法的社會發(fā)展評價模型及其實證研究[J];系統(tǒng)工程;2009年04期
4 劉廣斌;郭富貴;;中小型科技企業(yè)信用評價指標的構(gòu)建與篩選[J];工業(yè)技術(shù)經(jīng)濟;2009年08期
5 梁琪;企業(yè)經(jīng)營管理預(yù)警:主成分分析在logistic回歸方法中的應(yīng)用[J];管理工程學(xué)報;2005年01期
6 沈鳳武;郭海川;辛春林;沈躍峰;朱曉剛;;基于遍歷參數(shù)的主權(quán)信用風(fēng)險評級方法[J];國際金融研究;2012年09期
7 李剛;許傳華;;基于BP神經(jīng)網(wǎng)絡(luò)的個人信用評估體系研究[J];廣東金融學(xué)院學(xué)報;2007年01期
8 孟慶福;杜元園;曲華鋒;;信用評級的新方法——多元自適應(yīng)回歸樣條在民營企業(yè)信用評級中的應(yīng)用[J];廣東金融學(xué)院學(xué)報;2011年05期
9 冀巨海;王琪;;煤炭企業(yè)績效灰色關(guān)聯(lián)評價——基于變異系數(shù)法的分析[J];經(jīng)濟問題;2011年05期
10 張序萍;劉中文;張峰;;區(qū)域技術(shù)創(chuàng)新能力的指標篩選及評價研究[J];經(jīng)濟研究導(dǎo)刊;2010年30期
,本文編號:2230568
本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/2230568.html