天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

鐵路貨運信息數(shù)據(jù)挖掘研究

發(fā)布時間:2018-03-28 19:16

  本文選題:貨運數(shù)據(jù) 切入點:數(shù)據(jù)挖掘 出處:《中南大學(xué)》2012年碩士論文


【摘要】:隨著貨運市場競爭的不斷加劇、鐵路信息化進(jìn)程的逐步推進(jìn),鐵路信息系統(tǒng)積累了大量的貨運數(shù)據(jù)信息。貨運數(shù)據(jù)具有信息量大、結(jié)構(gòu)復(fù)雜、多層次等特征。應(yīng)用數(shù)據(jù)挖掘相關(guān)技術(shù),研究鐵路貨運市場目標(biāo)客戶、生命周期、客戶價值及發(fā)展等相關(guān)問題,是當(dāng)前鐵路貨運管理研究的熱點話題。論文研究了我國鐵路貨運數(shù)據(jù)挖掘問題,所做主要工作如下: (1)分析了鐵路貨運數(shù)據(jù)的組成、特點和層次結(jié)構(gòu),并對鐵路貨運數(shù)據(jù)進(jìn)行了整理和分類。 (2)深度挖掘鐵路貨運數(shù)據(jù)關(guān)聯(lián)規(guī)則,進(jìn)行知識發(fā)現(xiàn);對鐵路貨運數(shù)據(jù)進(jìn)行聚類分析,探尋鐵路貨運目標(biāo)客戶;利用ARIMA模型,提出基于時間序列的鐵路貨運量預(yù)測方法。 (3)系統(tǒng)分析鐵路貨運客戶關(guān)系生滅過程,合理劃分鐵路貨運客戶生命周期的典型階段,揭示不同階段特征變化和客戶忠誠發(fā)展演變規(guī)律,構(gòu)建基于數(shù)據(jù)挖掘的鐵路貨運客戶生命周期階段判定模型,提出鐵路貨運客戶生命周期階段判定過程與方法。 (4)深入分析不同生命周期階段鐵路貨運客戶利潤曲線特征,構(gòu)建不同階段的鐵路貨運客戶利潤擬合函數(shù),并提出基于數(shù)據(jù)挖掘的鐵路貨運客戶價值細(xì)分算法,對鐵路貨運客戶進(jìn)行細(xì)分。 (5)全面分析營銷成本、客戶類型、期望收益等鐵路貨運客戶發(fā)展影響因素,構(gòu)建潛在型客戶發(fā)展模型、競爭型客戶發(fā)展模型以及保持型客戶發(fā)展模型等一系列客戶發(fā)展模型,在此基礎(chǔ)上,提出不同類型不同階段的鐵路貨運客戶關(guān)系管理策略,并給出實例分析。
[Abstract]:With the increasing competition of freight transportation market and the gradual advancement of railway informatization process, railway information system has accumulated a large amount of freight data information, which has a large amount of information and complex structure. Using data mining technology to study the target customer, life cycle, customer value and development of railway freight market. It is a hot topic in the research of railway freight management. This paper studies the data mining problem of railway freight transport in China. The main work is as follows:. 1) the composition, characteristics and hierarchical structure of railway freight data are analyzed, and the railway freight data are arranged and classified. (2) deeply mining the association rules of railway freight data, making knowledge discovery; clustering analysis of railway freight data, searching for target customers of railway freight; using ARIMA model, a method of railway freight volume prediction based on time series is proposed. 3) systematically analyzing the birth and death process of railway freight transport customer relationship, reasonably dividing the typical stages of railway freight customer life cycle, revealing the characteristics of different stages and the evolution law of customer loyalty development. Based on data mining, a decision model of railway freight customer life cycle stage is built, and the process and method of railway freight customer life cycle phase determination are proposed. 4) deeply analyzing the characteristics of railway freight customer profit curve in different life cycle stages, constructing the railway freight customer profit fitting function in different stages, and putting forward the railway freight customer value subdivision algorithm based on data mining. Subdivide railway freight customers. 5) analyzing the influence factors of railway freight customer development, such as marketing cost, customer type and expected income, and constructing a series of customer development models, such as potential customer development model, competitive customer development model and maintenance customer development model, etc. On this basis, the paper puts forward different types and different stages of railway freight customer relationship management strategy, and gives an example analysis.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:F252;F532;F224

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鐘雁;郭雨松;;數(shù)據(jù)挖掘技術(shù)在鐵路貨運客戶細(xì)分中的應(yīng)用[J];北京交通大學(xué)學(xué)報;2008年03期

2 陳子陽,郭景峰;多層次關(guān)聯(lián)規(guī)則的快速挖掘算法[J];燕山大學(xué)學(xué)報;2003年04期

3 何友全,肖建,方磊;數(shù)據(jù)挖掘技術(shù)及在鐵道牽引供電系統(tǒng)中的應(yīng)用[J];電氣化鐵道;2003年04期

4 楊學(xué)兵;基于概念層次的關(guān)聯(lián)規(guī)則挖掘算法[J];安徽工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2003年04期

5 陳傳波,彭炎,陸楓;基于聚類的神經(jīng)網(wǎng)絡(luò)及其在預(yù)測中的應(yīng)用[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2003年06期

6 羅可,蔡碧野,吳一帆,謝中科,張麗;數(shù)據(jù)挖掘中聚類的研究[J];計算機(jī)工程與應(yīng)用;2003年20期

7 周劍雄,王明哲;基于關(guān)聯(lián)規(guī)則的數(shù)據(jù)挖掘技術(shù)的快速算法[J];計算機(jī)工程;2003年12期

8 馬建軍,陳文偉;基于集合理論的KDD方法[J];計算機(jī)應(yīng)用研究;1997年03期

9 葉飛躍;數(shù)據(jù)挖掘過程中的模糊聚類方法[J];計算機(jī)與現(xiàn)代化;2003年09期

10 萬紅新,聶承啟,尹紅;數(shù)據(jù)挖掘中的模糊聚類實現(xiàn)技術(shù)[J];計算機(jī)與現(xiàn)代化;2003年11期



本文編號:1677697

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jtysjj/1677697.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶06bff***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com