基于改進(jìn)ARIMA模型的北京市教育行業(yè)發(fā)展態(tài)勢(shì)分析
[Abstract]:Beijing as the capital, in recent years, in the rapid development of the "big city disease" problem is increasingly prominent. This is also reflected in the development of the education industry in Beijing, such as education congestion, insufficient resources and unequal distribution. In view of the problems existing in the development of education industry in Beijing, the outline of Beijing, Tianjin and Hebei Cooperative Development Plan (hereinafter referred to as "outline") clearly points out that education, as the core function of non-capital, needs to be solved. At the same time, the outline also points out clearly that the non-core function of education in Beijing should be solved mainly from the following two aspects: strictly control the increment and the stock of orderly unwinding. Through the establishment of a forecast model for the future growth of educational institutions in Beijing, this paper makes the government make a more scientific decision on controlling the increment and unlocking the stock by making quantitative analysis on the future increment. Finally, it will promote the sustainable development of education in Beijing in the future. The main work of this paper is as follows: first, from the perspective of information analysis, we collect, collate and analyze the relevant information on the development of education in Beijing. This paper analyzes the present situation of education development in Beijing in recent years, and then analyzes the reasons for the present situation, and points out the problems existing in the current development process. Secondly, in the information prediction method, the improved ARIMA model is used as the prediction model in this paper. This paper introduces the models used in this paper and their application status, and then uses the ARIMA model and the neural network combination model to predict the change trend of the number of educational institutions in Beijing, and evaluates the prediction results. Because the model can express the linear and nonlinear components in the time series, its prediction effect is better than the single model, and it can more accurately predict the number of educational institutions in Beijing. Thirdly, on the basis of the forecast results of the model and the analysis of the present situation of education in Beijing, from the point of view of optimizing the allocation of educational resources, this paper provides policy suggestions on how to control and solve the number of educational institutions in Beijing in the future.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:G527
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于源;;北京教育現(xiàn)狀的財(cái)政視角研究[J];中國(guó)人口·資源與環(huán)境;2016年S1期
2 付堯;;我國(guó)政府教育投入努力程度的分析與預(yù)測(cè)——基于ARIMA模型的研究[J];中國(guó)人民大學(xué)教育學(xué)刊;2014年02期
3 熊志斌;;基于ARIMA與神經(jīng)網(wǎng)絡(luò)集成的GDP時(shí)間序列預(yù)測(cè)研究[J];數(shù)理統(tǒng)計(jì)與管理;2011年02期
4 周忠彬;呂紅梅;鄒郢;;ARIMA干預(yù)模型在醫(yī)院門(mén)診量預(yù)測(cè)中的應(yīng)用[J];中國(guó)醫(yī)院統(tǒng)計(jì);2008年02期
5 龔國(guó)勇;;ARIMA模型在深圳GDP預(yù)測(cè)中的應(yīng)用[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2008年04期
6 譚滿(mǎn)春;馮犖斌;徐建閩;;基于ARIMA與人工神經(jīng)網(wǎng)絡(luò)組合模型的交通流預(yù)測(cè)[J];中國(guó)公路學(xué)報(bào);2007年04期
7 吳書(shū)芳;;透視外籍教師在中國(guó)的英語(yǔ)教學(xué)[J];瓊州大學(xué)學(xué)報(bào);2006年04期
8 周玉忠,王輝,王奕文;外教與中國(guó)師生在外語(yǔ)教學(xué)有關(guān)問(wèn)題上的分歧探析[J];外語(yǔ)教學(xué);2004年06期
9 周學(xué)軍,劉穎琦;基于人工神經(jīng)網(wǎng)絡(luò)BP算法的教育評(píng)估專(zhuān)家評(píng)價(jià)研究[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2003年11期
10 萬(wàn)建強(qiáng),文洲;ARIMA模型與ARCH模型在香港股指預(yù)測(cè)方面的應(yīng)用比較[J];數(shù)理統(tǒng)計(jì)與管理;2001年06期
相關(guān)重要報(bào)紙文章 前1條
1 費(fèi)偉偉;李泓冰;郝洪;詹勇;馮華;賀林平;;京津雙城欲破繭化蝶[N];人民日?qǐng)?bào);2014年
相關(guān)碩士學(xué)位論文 前3條
1 孫娜;時(shí)間序列分析在教育投資與經(jīng)濟(jì)增長(zhǎng)方面的研究應(yīng)用[D];遼寧師范大學(xué);2012年
2 郝博乾;基于時(shí)間序列分析的股票預(yù)測(cè)模型研究[D];電子科技大學(xué);2011年
3 趙瑋英;時(shí)間序列分析在氣象中的應(yīng)用[D];揚(yáng)州大學(xué);2010年
,本文編號(hào):2164071
本文鏈接:http://sikaile.net/jiaoyulunwen/jiaoyutizhilunwen/2164071.html