長期生存者資料的參數(shù)混合模型
[Abstract]:In cancer clinical trials, because of the overall heterogeneity of patients, some patients who are sensitive to treatment do not show any cancer symptoms or signs, so they are considered to be "long-term survivors (long term survivors)" or healing (cured individuals), That is, in sufficient follow-up time, such individuals do not have a specific end-point event, and usually have a longer censored survival time. Long-term survivors mean that they do not occur or never end-point events (death, relapse of disease, etc.) until the end of the study. In the analysis of this kind of data, we should first determine whether there are long-term survivors in the data. If there is no long-term survival in the data or there is no evidence to confirm the existence of long-term survival, the traditional survival analysis method is used. If there is evidence that there are long-term survivors in the data, and the follow-up is sufficient, the traditional analytical method is not appropriate because it treats the long-term survivors as amputation observation objects, which is obviously unreasonable. Blind use of traditional survival analysis may lead to unreasonable interpretation of the results and even to the opposite conclusion. In this paper, we introduce a statistical model for long-term survivor data-parametric hybrid model, including exponential mixed model and Weibull hybrid model, Burr XII hybrid model. These three models are widely used in the analysis of long-term survival data. We use the goodness-of-fit test to select the best model to fit the actual data, and use the corresponding model to make further analysis. The maximum likelihood method is used to estimate the parameters, and the software S-PLUS6.0 is used to realize the estimation. Through the analysis of examples, it is proved that if the traditional survival analysis method can not make good use of the information provided by the data, the conclusion is not comprehensive, even the opposite, if the traditional survival analysis method is used. If the parameter mixed model is used to analyze the long-term survival data, a comprehensive and correct conclusion can be obtained, and more information can be provided from different sides, which can guide the clinical treatment effectively and reasonably. Furthermore, it makes up for and consummates the deficiency of the classical survival analysis method. With the continuous improvement of medical technology, more and more clinical tumor data belong to long-term survival data. The statistical analysis model for long-term survival data introduced in this paper is of great applicability and practicability, and is worthy of recommendation.
【學(xué)位授予單位】:山西醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2008
【分類號】:R311
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙景義;余紅梅;;參數(shù)混合模型在長期生存者資料分析中的應(yīng)用[J];中國衛(wèi)生統(tǒng)計;2010年03期
2 傅承主,方積乾,柳青;疾病自然史的隨機模型[J];生物數(shù)學(xué)學(xué)報;1996年S1期
3 夏結(jié)來;非線性模型統(tǒng)計分析體系及NoSA實現(xiàn)(二)[J];中國衛(wèi)生統(tǒng)計;2000年05期
4 楊岫巖;疾病預(yù)后研究的設(shè)計與分析方法[J];中華風(fēng)濕病學(xué)雜志;2002年02期
5 歐陽資生;臨床試驗中的生存分析[J];中國衛(wèi)生統(tǒng)計;2003年06期
6 方積乾;生存分析與生物醫(yī)學(xué)研究[J];北京大學(xué)學(xué)報(醫(yī)學(xué)版);1990年04期
7 賀憲民,賀佳,范思昌;Cox模型與BP神經(jīng)網(wǎng)絡(luò)在處理非線性數(shù)據(jù)時的性能比較[J];數(shù)理統(tǒng)計與管理;2004年02期
8 石中陸,謝學(xué)民,王志朝;用Cox模型作復(fù)方丹參對家兔失血性休克的療效分析[J];北京大學(xué)學(xué)報(醫(yī)學(xué)版);1987年04期
9 張忠占;流行病學(xué)研究中的嵌套病例對照研究[J];生物數(shù)學(xué)學(xué)報;2001年03期
10 郭政,李霞;遺傳性疾病的發(fā)病年齡分布與發(fā)病風(fēng)險分析[J];國外醫(yī)學(xué).遺傳學(xué)分冊;1995年02期
相關(guān)博士學(xué)位論文 前1條
1 郜艷暉;復(fù)雜性狀家庭聚集性統(tǒng)計分析方法的研究[D];復(fù)旦大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 趙景義;長期生存者資料的參數(shù)混合模型[D];山西醫(yī)科大學(xué);2008年
2 任允文;關(guān)于刪失數(shù)據(jù)的中值回歸模型[D];華東師范大學(xué);2004年
3 任麗梅;不完全數(shù)據(jù)的統(tǒng)計分析[D];西北工業(yè)大學(xué);2004年
4 張曉丹;分位數(shù)回歸及其在糖尿病治療中的應(yīng)用[D];天津大學(xué);2010年
,本文編號:2437120
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2437120.html