結(jié)核分枝桿菌GlmU的表達(dá)、純化及其酶促反應(yīng)動(dòng)力學(xué)研究
[Abstract]:Tuberculosis is still an infectious disease with high morbidity and mortality worldwide. One third of the world's population is infected with Mycobacterium tuberculosis, and its incidence is on the rise year by year. Today, the increasing number of multidrug-resistant tuberculosis (MDR-TB) makes it difficult to treat tuberculosis that could be cured once again. Therefore, the primary task now is to find new targets from Mycobacterium tuberculosis itself to develop new anti-tuberculosis drugs.
Target selection is of course inseparable from the strong cell wall structure of Mycobacterium tuberculosis, which is an important part of the survival of Mycobacterium tuberculosis. The unique structure of cell wall has become the focus of recent research. The core layer consists of three parts: peptidoglycan near the cell membrane, polyarabinogalactose in the middle and mycobacterial acid in the outermost. Arabinogalactose is linked to peptidoglycan via L-rhamnose-D-N-acetylglucosamine disaccharide conjugation molecule. UDP-N-acetylglucosamine is a glycosyl donor of N-acetylglucosamine, and its synthesis undergoes four steps. GlmU participates in acetylation and ureaylation with its bifunctional function. At the same time, gene knockout model has confirmed that glmU is necessary for bacterial growth. In addition, the biosynthesis of UDP-N-acetylglucosamine is different in humans, and the activity of glucosamine-1-phosphate acetyltransferase does not exist in humans. Therefore, GlmU, especially its acetyltransferase activity, is a potential drug target. Studying the characteristics of UDP-N-acetylglucosamine acetyltransferase is helpful to develop safe, reliable and non-toxic anti-knotting drugs. Nuclear drugs.
The purpose of this paper is: (1) to express the GlmU protein of Mycobacterium tuberculosis in E. coli BL21 (DE3) by pET16b expression vector; (2) to purify the GlmU protein by affinity chromatography, and to identify the purified GlmU protein by SDS-PAGE and Western blotting; (3) to compare the methods for determining the activity of GlmU enzyme, and select the high-throughput screening method. GlmU inhibitor detection method was selected; (4) GlmU enzymatic reaction kinetics was studied to determine the optimal reaction conditions and determine the reaction kinetics constant Km value and Vmax, so as to facilitate the screening of inhibitors in the future.
The results obtained in this paper are as follows:
1. induce the high expression of GlmU protein in Escherichia coli BL21 (DE3).
BL21 (DE3) was induced to express recombinant GlmU protein by 1 mM IPTG and 30 oC shaking culture for 3.5 hours. The supernatant was analyzed by SDS-PAGE and Western blotting. The results showed that there was a high expression of GlmU protein in the supernatant with a molecular weight of 54.10 kD.
2. purification of GlmU protein by affinity chromatography
The recombinant GlmU protein was purified by histidine-Ni2+ affinity chromatography. The elution fraction 1-5 was analyzed by SDS-PAGE. The results showed that the purity of the elution fraction 2-5 was high and no other impurity proteins were found. The elution fraction 3-5 was analyzed by Western blotting. GlmU protein was obtained. The concentration of elution component 4 was 442 ug/ml by Coomassie brilliant blue method. The component was used for enzyme activity analysis.
3. establish a method for the determination of GlmU enzyme activity and facilitate the establishment of a high throughput screening method for enzyme inhibitors.
GlmU acetyltransferase activity:
(1) HPLC method: Nova-Pak C18 (3.9 x 150 mm, 4 micron) column was used. Phosphate buffer (pH 6.5) -methanol (95:5) was used as mobile phase. The flow rate was 1.0 mLmin-1. The elution time of HSCoA was about 9.6 min at 259 nm.
(2) Chemical colorimetry: DTNB (Ellman's Reagent) was added into the enzyme reaction system, and the content of HSCoA was determined by detecting the thiol group. The absorbance was measured at 405 nm by enzyme labeling instrument.
GlmU uridine transferase activity:
(1) HPLC method: The reaction product UDP-GlcNAc was detected by Nova-Pak C18 (3.9 *150 mm, 4 micron) column with 20 mM triethylamine-acetic acid buffer (pH 4.0) as mobile phase at a flow rate of 0.5 mL min-1 at a wavelength of 260 nm. The elution time was 7.8 min.
(2) Chemical colorimetry: pyrophosphatase was used to hydrolyze pyrophosphate into phosphoric acid, phosphoric acid and ammonium molybdate formed phosphomolybdic acid complex, then the color of malachite green changed from yellow green to blue green. The absorbance value of malachite green was measured at 630 nm to determine the content of phosphoric acid.
4. the kinetics of GlmU protease reaction was studied.
(1) determination of initial velocity:
GlmU acetyltransferase activity: GlcN-1-P and AccCoA were reacted with different concentrations of GlmU protein in 37oC for different time, and the enzyme concentration curve and reaction time curve were drawn.
Urotransferase activity: substrate GlcNAc-1-P, UTP and pyrophosphatase reacted with different concentrations of GlmU at 37oC for different time, and plotted the enzyme concentration curve and reaction process curve. The results showed that the initial reaction rate of GlmU urease enzyme concentration range was 1.33 ug/ml, the time range was 5 minutes.
(2) determine the best reaction conditions for GlmU two activities:
The optimum temperature of GlmU acetyltransferase is 30oC, the optimum pH is 8.0, and the activity of GlmU acetyltransferase does not need the participation of Mg2 +; the optimum temperature of GlmU urease transferase is 42oC, and the optimum pH is 8.0. In the absence of Mg2 +, the activity of urease transferase can not be detected. It can be seen that Mg2 + is GlmU uridine. The optimum concentration of activator of transferase is 20 mM.
(3) GlmU enzyme kinetic constants were measured under the best reaction conditions.
The Km value and Vmax of AcCoA were measured by double reciprocal method. For acetyltransferase, the Km value of AcCoA was 0.224+0.07mM, the maximum rate of Vmax was 0.119+0.038 mMmin-1, the Km value of GlcN-1-P was 0.061+0.005mM, and the maximum rate of Vmax was 0.081+0.003mM. For urease, the Km value of substrate GlcNAc-1-P was 0.044+0.005mM, the maximum rate Vmax was 0.0054+0.0002mmin-1, the substrate UTP Km value was 0.024+0.0015mM, and the maximum rate was 0.006+0.0001mmmmin-1.
Conclusion:
The soluble expression of GlmU in E. coli BL21 (DE3) provides a material guarantee for us to study the kinetic characteristics of enzymatic reaction; the chemical coloration method for GlmU enzymatic reaction is accurate, simple, convenient for the study of kinetic characteristics of enzymatic reaction and high throughput screening of GlmU inhibitors; the kinetic characteristics of enzymatic reaction of GlmU are studied. The optimum reaction conditions and the kinetic constants Km and Vmax. were determined.
【學(xué)位授予單位】:大連醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2009
【分類號(hào)】:R378;Q78
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柴俊;羅家琴;蔣成硯;朱文豪;張以芳;;牛結(jié)核分枝桿菌Ag85b基因的克隆及表達(dá)[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年S3期
2 王瑞博;井申榮;;結(jié)核分枝桿菌分泌蛋白TB10.4的功能和應(yīng)用[J];生命的化學(xué);2011年04期
3 牛雪;吳叢梅;高冷;趙韞慧;殷玉和;;結(jié)核分枝桿菌H_(37)Rv異檸檬酸裂解酶基因的克隆表達(dá)及活性[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2011年04期
4 康健;王麗梅;王平;趙勇;張薇;韓文東;丁悅娜;孫志平;柏銀蘭;徐志凱;;小鼠結(jié)核分枝桿菌耐藥模型的建立與評(píng)價(jià)[J];中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào);2011年04期
5 王華南;亓英芳;朱婷;于申業(yè);劉慧芳;司微;楊盛;王加明;馮擁軍;李素蘭;于秀婷;王春來(lái);劉思國(guó);;結(jié)核分枝桿菌pdhA基因的原核表達(dá)及其免疫原性分析[J];中國(guó)獸醫(yī)科學(xué);2011年07期
6 向志光;林樹柱;董娜;袁偉;徐艷峰;秦川;;結(jié)核分枝桿菌感染小鼠的脾臟和肺臟組織荷菌量與病理變化[J];中國(guó)比較醫(yī)學(xué)雜志;2011年08期
7 丁淑琴;王強(qiáng);王淑靜;王潔;張焱;;結(jié)核分枝桿菌rps12基因的克隆及核酸序列的分析[J];寧夏醫(yī)科大學(xué)學(xué)報(bào);2011年08期
8 胡錦;謝建平;;堿基切除修復(fù)與分枝桿菌基因組穩(wěn)定性[J];中國(guó)細(xì)胞生物學(xué)學(xué)報(bào);2011年03期
9 郭芳芳;鄒立林;吳英松;胡志明;李金龍;呂建新;高基民;;用于時(shí)間分辨熒光免疫分析的結(jié)核分枝桿菌培養(yǎng)濾液蛋白10參照品的制備[J];南方醫(yī)科大學(xué)學(xué)報(bào);2011年06期
10 石華;戈朝暉;賈偉;馬小明;牛寧奎;董輝;王自立;;結(jié)核分枝桿菌分泌蛋白MPB64表達(dá)純化[J];寧夏醫(yī)科大學(xué)學(xué)報(bào);2011年08期
相關(guān)會(huì)議論文 前10條
1 戴廣明;曹以誠(chéng);杜正平;陳洵;黃曙海;逄宇;周楊;黃海榮;趙雁林;;結(jié)核分枝桿菌環(huán)介導(dǎo)恒溫?cái)U(kuò)增(LAMP)快速檢測(cè)方法的構(gòu)建[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2010年學(xué)術(shù)年會(huì)論文匯編[C];2010年
2 許優(yōu);孫惠平;張?jiān)鲑t;劉莉娜;;關(guān)于結(jié)核分枝桿菌定量方法的研究[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2006年學(xué)術(shù)會(huì)議論文匯編[C];2006年
3 劉毅;李衛(wèi)民;田苗;孫照剛;李傳友;周輝;張治國(guó);高鐵杰;高峰;;快速篩選定義北京基因型結(jié)核分枝桿菌的新方法[A];2007年中國(guó)防癆協(xié)會(huì)全國(guó)學(xué)術(shù)會(huì)議論文集[C];2007年
4 張?jiān)滦?辛毅;馬郁芳;;結(jié)核分枝桿菌RmlB的表達(dá)、純化及酶促反應(yīng)動(dòng)力學(xué)研究[A];2008年全國(guó)糖生物學(xué)學(xué)術(shù)會(huì)議論文摘要[C];2008年
5 劉焰;劉勝武;談蓉;馬立新;劉君炎;;結(jié)核分枝桿菌Ag85B與ESAT-6雙順?lè)醋又亟M腺表達(dá)載體的構(gòu)建[A];第六屆全國(guó)免疫學(xué)學(xué)術(shù)大會(huì)論文集[C];2008年
6 吳園;鐘敏;王易偉;鐘靜;胡頻頻;毛旭虎;;Rv0341用于診斷依賴?yán)F浇Y(jié)核分枝桿菌結(jié)核病的研究概況[A];中國(guó)防癆協(xié)會(huì)臨床委員會(huì)、中國(guó)防癆協(xié)會(huì)基礎(chǔ)委員會(huì)學(xué)術(shù)研討會(huì)論文集[C];2008年
7 張旭霞;張海青;李傳友;田苗;趙冰;李衛(wèi)民;張健源;印云青;焦揚(yáng);端木宏謹(jǐn);;結(jié)核分枝桿菌黏附素HBHA防治結(jié)核病的動(dòng)物實(shí)驗(yàn)研究[A];2005年中國(guó)防癆協(xié)會(huì)全國(guó)學(xué)術(shù)會(huì)議論文集[C];2005年
8 陳曦;張宗德;劉忠泉;賈紅彥;邢愛(ài)英;古書香;;結(jié)核分枝桿菌rv3873、rv3879c基因原核表達(dá)載體的構(gòu)建和表達(dá)[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2006年學(xué)術(shù)會(huì)議論文匯編[C];2006年
9 周慶;方中飛;沈小英;宋冰;方孝美;;臨床分離結(jié)核分枝桿菌的耐藥性分析[A];2006年浙江省檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2006年
10 陳濤;周琳;周杰;江勇;周志剛;彭建明;文力;彭東東;何超文;鐘球;;環(huán)介導(dǎo)等溫?cái)U(kuò)增法快速檢測(cè)結(jié)核分枝桿菌的方法建立與臨床應(yīng)用評(píng)估[A];中華醫(yī)學(xué)會(huì)結(jié)核病學(xué)分會(huì)2011年學(xué)術(shù)會(huì)議論文匯編[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 韓曉玲 通訊員 范敬群 金安江;華中農(nóng)大研究成果獲世界聲譽(yù)[N];湖北日?qǐng)?bào);2009年
2 莊愉;新型抗結(jié)核疫苗的開發(fā)研究[N];中國(guó)醫(yī)藥報(bào);2002年
3 記者 陳青;讓結(jié)核菌三天內(nèi)原形畢露[N];文匯報(bào);2009年
4 錢忠軍;華中農(nóng)大發(fā)現(xiàn)新基因有望控制結(jié)核病[N];江蘇科技報(bào);2009年
5 駐鄂記者 錢忠軍 通訊員 金安江 范敬群;發(fā)現(xiàn)可能控制結(jié)核病的新基因[N];文匯報(bào);2009年
6 記者 黃每裕;珠海推出兩種檢測(cè)試劑新產(chǎn)品[N];中國(guó)醫(yī)藥報(bào);2009年
7 莊愉;新型抗結(jié)核疫苗的開發(fā)研究[N];中國(guó)醫(yī)藥報(bào);2002年
8 記者 項(xiàng)錚;團(tuán)山會(huì)議研討罕見(jiàn)病原體防治策略[N];科技日?qǐng)?bào);2009年
9 ;整合力量 抗擊“瘟神”[N];中國(guó)醫(yī)藥報(bào);2003年
10 宋心德;IDSA2基因?qū)е陆Y(jié)核桿菌產(chǎn)生抗藥性[N];醫(yī)藥經(jīng)濟(jì)報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 董海燕;中國(guó)13省市結(jié)核分枝桿菌基因多態(tài)性分析[D];中國(guó)疾病預(yù)防控制中心;2011年
2 陳嘉臻;結(jié)核分枝桿菌特異的RD2/RD11蛋白應(yīng)用于結(jié)核免疫診斷的研究[D];復(fù)旦大學(xué);2009年
3 王平;肺分枝桿菌感染臨床特征、耐藥模式、預(yù)后研究及肺組織結(jié)核分枝桿菌巢式PCR檢測(cè)[D];北京協(xié)和醫(yī)學(xué)院;2011年
4 陳軍;武漢地區(qū)結(jié)核分枝桿菌藥物敏感性及氟喹諾酮耐藥分子機(jī)制的研究[D];華中科技大學(xué);2011年
5 陳軍;武漢地區(qū)結(jié)核分枝桿菌藥物敏感性及氟喹諾酮耐藥分子機(jī)制研究[D];華中科技大學(xué);2011年
6 樂(lè)軍;耐藥結(jié)核分枝桿菌的多維分析[D];復(fù)旦大學(xué);2003年
7 孫勇;北京地區(qū)結(jié)核分枝桿菌耐藥分子特點(diǎn)及結(jié)核分枝桿菌耐喹諾酮類藥物泵機(jī)制的初步研究[D];北京市結(jié)核病胸部腫瘤研究所;2012年
8 劉凱;結(jié)核分枝桿菌潛伏感染者和初發(fā)結(jié)核病患者免疫分子標(biāo)識(shí)的篩選[D];北京協(xié)和醫(yī)學(xué)院;2010年
9 宋文剛;茜草素抗結(jié)核分枝桿菌作用機(jī)制的蛋白質(zhì)組學(xué)研究[D];吉林大學(xué);2007年
10 姜曉穎;北京地區(qū)結(jié)核分枝桿菌基因分型及與耐藥性關(guān)系的研究[D];北京市結(jié)核病胸部腫瘤研究所;2012年
相關(guān)碩士學(xué)位論文 前10條
1 蔡溢;結(jié)核分枝桿菌RmlA的表達(dá)、純化以及酶促反應(yīng)動(dòng)力學(xué)研究[D];大連醫(yī)科大學(xué);2006年
2 孫文霞;結(jié)核分枝桿菌抗原模擬肽納米金生物傳感器診斷結(jié)核病的研究[D];湖南師范大學(xué);2011年
3 王霞芳;IFN-γ增強(qiáng)BALB/c小鼠對(duì)結(jié)核分枝桿菌感染的抵抗力[D];蘇州大學(xué);2002年
4 曹立雪;應(yīng)用膜芯片檢測(cè)結(jié)核分枝桿菌rpoB基因突變[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2003年
5 韓喜琴;噬菌體生物擴(kuò)增法檢測(cè)結(jié)核分枝桿菌藥物敏感性研究及評(píng)價(jià)[D];北京市結(jié)核病胸部腫瘤研究所;2004年
6 王琳;結(jié)核分枝桿菌ClpX和ClpP2蛋白酶的克隆表達(dá)及其性質(zhì)研究[D];西南大學(xué);2010年
7 丁衛(wèi)民;耐多藥肺結(jié)核與結(jié)核分枝桿菌L型感染的臨床研究[D];山西醫(yī)科大學(xué);2003年
8 吳玉敏;1.結(jié)核分枝桿菌去標(biāo)簽Mtb8.4-Hspx和Hspx-Mtb8.4基因克隆及表達(dá) 2.FTY720對(duì)腎移植受者治療的安全性和有效性系統(tǒng)評(píng)價(jià)[D];蘭州大學(xué);2010年
9 佘茜;結(jié)核分枝桿菌PPE68蛋白的表達(dá)及初步應(yīng)用[D];重慶醫(yī)科大學(xué);2011年
10 申峻松;結(jié)核分枝桿菌lhp基因的原核表達(dá)及其產(chǎn)物的單克隆抗體研制[D];揚(yáng)州大學(xué);2008年
,本文編號(hào):2220429
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2220429.html