外周絲裂原活化蛋白激酶在蜜蜂毒肽誘致病理性痛中的作用
[Abstract]:Over the past 10 years, this research group has conducted further studies on the basis of Lariviere and Melzack's proposed Bee venom (BV) model. The model is characterized by the ability to simulate three major manifestations of clinicopathological pain, including: 1) persistent self pain, 2) primary thermo pain and mechanical pain, 3) secondary pain sensitivity and "mirror pain". At the same time, the study group also used the body electrophysiological single cell extracellular recording technique to induce the spontaneous discharge response of the wide-dynamic-range (WDR) neurons in the wide dynamic region of the spinal dorsal horn and to enhance the response to the heat and mechanical stimulation of the injection site in the corresponding segment of the dorsal horn of the spinal cord. The results of the form are in accordance with the results of behavioral studies. Then, the research group also carried out a deep study on the components of the bee venom. The bee venom is a complex containing more than twenty components. The main components include: (1) Melittin, the most important substance in the crude venom of bees (about 50%) in the crude venom of the freeze-dried, and (2) Apamin, in the bee venom. Only 2% of the crude venom of freeze-dried; (3) other major damage components, such as phospholipase A_2 (12%), hyaluronidase (less than 3%), mast cell degranulation peptide (2%), histamine (1.5%), and Melittin F, etc. because there have been reports that subcutaneous injection of phospholipase A_2, hyaluronidase, mast cell degranulation peptide, histamine and 5-HT can not cause images. The long duration of bee venom and Faure Marin's long duration spontaneous spontaneous contraction reflex behavior, and not long duration activation of the peripheral primary afferent C fibers and spinal dorsal horn nociceptive neurons continued to increase, so we speculate that these substances are not the main cause of inflammation in the bee venom. We also use behavioral pharmacology, in vivo single cell outside the cell. The biological function and mechanism of honeybee venom peptide, such as single cell whole cell patch clamp recording in vitro and calcium imaging technique, were studied. It was found that Melittin is the main inflammatory chemical component in bee venom, and the main factor of honeybee venom induced persistent self pain, heat and mechanical pain sensitivity and inflammatory reaction. It can sensitize the peripheral primary sensory neurons directly, open the non selective cation channel (transient receptor potential vanilloid 1, TRPV1) on the capsaicin receptor on the open cell, and mediate the continuous spontaneous pain and thermo algesia induced by the bee venom peptide and the functional changes of the spinal dorsal horn nociceptive neurons, and can also activate phosphorus by activating phosphorus. Lipase A2- lipoxygenase metabolic pathway and regulating the opening of TRPV1 under the help of intracellular protein kinase A, C, resulting in persistent self pain and heat pain sensitivity after subcutaneous injection of honeybee venom, and human experiments have shown that the apaptide can cause spontaneous pain and primary mechanical pain sensitivity.
However, the peripheral afferent mechanism of a variety of pain related behaviors caused by honeybee venom peptide is not fully described. MITOGEN-ACTIVED protein kinases (MAPKs), as a class of highly conserved protein kinases in evolution, participates in the regulation of many sides of the cell, which is converted into intracellular by extracellular stimulation. Transcriptional and posttranslational reactions, linking the key regulatory targets within the cell surface of the recipient, play a key role in the cell signaling pathway.
In mammalian cells, three members of the MAPK family have been clearly described, namely, ERK1/2 (extracellular signal-regulated kinase 1 and 2), c-Jun N terminal kinase / stress activated protein kinase (JNK/SAPK, c-Jun N-terminal kinase/stress-actived) and kinase. Does the protein kinase play a role in the noxious stimulus response and the pain sensitization induced by melittin? Is the action of ERK, JNK, and P38 consistent? Can the current study help us further elaborate on the peripheral afferent mechanism of a variety of pain related behaviors induced by MELITIN? And we have developed a peripheral mitogen activated protein kinase in the bee The study of the role of toxic peptide induced pathological pain is mainly by injecting Extracellular signal-regulated kinase (ERK) inhibitor U0126, c-Jun amino terminal kinase (C-Jun N-terminal kinase,), respectively, after the local injection of honeybee venom in the subplantar subcutaneous part of the rat. JNK) the inhibitor SP600125 and the P38 mitogen activated protein kinase inhibitor SB239063 were used to observe their role in the pathological pain induced by bee venom peptide by behavioral pharmacology.
Results: (1) subcutaneous injection of ERK, JNK, and P38 inhibitors could not change the latent period of heat reaction and the threshold of response to mechanical stimulation in rats without any treatment, which suggests that the three main peripheral mitogen activated protein kinase subfamilies play a smaller role in normal pain sensation transmission in normal physiological state. (2) ERK, JNK and P38 inhibitors can obviously inhibit the production of persistent self pain induced by melittin, and it is dose-dependent; and the way of after administration can also significantly inhibit the maintenance of persistent self pain induced by melittin. (3) for the thermal pain sensitivity, the ERK, JNK, and P38 inhibitors in the pre administration group can inhibit the bee Toxic peptide induced primary thermal pain sensitization; and subcutaneous injection of ERK for 2 to 3 hours after subcutaneous injection of melittin in the drug group, JNK, P38 inhibitors also partially reverse thermal pain sensitivity, indicating that these three protein kinases play a role in the process of promeltin induced primary thermo algesia production and maintenance. (4) for mechanical properties. ERK and JNK inhibitors have no inhibitory effect on the primary mechanical pain induced by melittin, both through the pre administration and after the post administration, indicating that the two protein kinase does not participate in the production and maintenance of the primary mechanical pain sensitization induced by the bee venom peptide; and the P38 mitogen activated protein kinase inhibitor is used for the primary mechanical pain sensitivity. There is no inhibitory effect on the maintenance of primary mechanical pain sensitization. (5) local injection of these three kinase inhibitors on the contralateral foot has no effect on the sustained spontaneous pain of the injection of the one side of the foot of the bee venom, the production and maintenance of the primary heat and mechanical pain sensitivity, which eliminates the systematic action of the three inhibitors. Diameter.
Conclusion: the activation of peripheral mitogen activated protein kinase may be involved in the spontaneous pain induced by melittin and the production and maintenance of primary thermo pain sensitization, but it has no effect on the primary mechanical pain induced by melittin, which suggests the separation of the transmission of the peripheral mechanical and thermo algesia.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2008
【分類號】:R363
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李政通;李俊;黃成;李浩;章圣鵬;黃艷;陶輝;;CCl_4誘導(dǎo)的大鼠肝纖維化模型肝纖維化逆轉(zhuǎn)與MAPK信號通路的研究[J];中國藥理學(xué)通報(bào);2011年06期
2 呂元軍;譚效鋒;;p38 MAPK與糖尿病腎臟疾病研究進(jìn)展[J];醫(yī)學(xué)綜述;2010年15期
3 彭惠;洪蘇玲;李平華;;p38絲裂原活化蛋白激酶信號通路在糖尿病性視網(wǎng)膜病變中的作用研究進(jìn)展[J];眼視光學(xué)雜志;2007年02期
4 張劍;李泉;黎緯明;鄒萍;;異基因T淋巴細(xì)胞誘導(dǎo)血管內(nèi)皮細(xì)胞組織因子的表達(dá)[J];中國組織工程研究與臨床康復(fù);2009年53期
5 解文博;葉玲;;p38絲裂原活化蛋白激酶信號通路的部分研究方法[J];牙體牙髓牙周病學(xué)雜志;2009年10期
6 陳偉,付小兵,孫同柱,楊銀輝,趙志力,盛志勇;增生性瘢痕中磷酸化P38絲裂原活化蛋白激酶和c-Jun蛋白的表達(dá)特征及其與瘢痕形成的關(guān)系[J];中國修復(fù)重建外科雜志;2003年05期
7 施新崗,李兆申,賈一韜,許永春,滿曉華,龔燕芳,屠振興,許國銘;大鼠重癥急性胰腺炎發(fā)病機(jī)制中p38絲裂原活化蛋白激酶的作用[J];世界華人消化雜志;2005年05期
8 王雪笠;呂佩源;郭宗成;馮連元;陶冉;黃通瑞;王麗;;血管性癡呆小鼠海馬p38 MAPK mRNA表達(dá)特征的研究[J];中風(fēng)與神經(jīng)疾病雜志;2008年02期
9 黃水清;沈小燕;韓凌;王斌;王劍;李杰芬;;當(dāng)歸補(bǔ)血湯含藥血清對ox-LDL激活單核細(xì)胞p38 MAPK的作用[J];中藥新藥與臨床藥理;2010年05期
10 于欣;張建中;馬愛玲;王菲;郭鳳英;;大鼠正常血糖腦缺血及高血糖腦缺血時p38MAPK的表達(dá)[J];寧夏醫(yī)學(xué)院學(xué)報(bào);2006年04期
相關(guān)會議論文 前10條
1 李開誠;陳軍;;蜜蜂毒肽通過激活外周辣椒素受體誘致持續(xù)性自發(fā)痛和熱痛敏[A];中國生理學(xué)會第六屆全國青年生理學(xué)工作者學(xué)術(shù)會議論文摘要[C];2003年
2 王文;武勝昔;李云慶;;鞘內(nèi)注射5-HT_(1A)受體反義探針減弱蜜蜂毒誘致的自發(fā)痛并減少脊髓5-HT_(1A)受體的表達(dá)[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊)[C];2001年
3 李怡寧;胡濟(jì)安;;ERK1/2在涎腺腺樣囊性癌中的表達(dá)及意義[A];中華口腔醫(yī)學(xué)會第七屆全國口腔病理學(xué)術(shù)會議論文摘要匯編[C];2006年
4 袁明;姜世忠;李志利;李建軍;;尾吊大鼠股動脈中ERK1/2含量的變化及其對收縮功能的影響[A];中國空間科學(xué)學(xué)會空間生命專業(yè)委員會2003年中國空間生命科學(xué)與航天醫(yī)學(xué)會議論文摘要集[C];2003年
5 朱建華;黃朝陽;劉忠;李閃;;苯那普利對高血壓大鼠血管細(xì)胞外信號調(diào)節(jié)激酶途徑的影響[A];2004年浙江省心血管病學(xué)學(xué)術(shù)年會論文匯編[C];2004年
6 朱建華;李閃;劉忠;黃朝陽;;不同年齡高血壓大鼠血管平滑肌中 ERK 和 MKP-1的表達(dá)[A];2004年浙江省心血管病學(xué)學(xué)術(shù)年會論文匯編[C];2004年
7 周丹;沈勤;;ERK信號轉(zhuǎn)導(dǎo)通路在LPS誘導(dǎo)的炎癥過程中的表達(dá)[A];華東六省一市生物化學(xué)與分子生物學(xué)會2008年學(xué)術(shù)交流會論文摘要匯編[C];2008年
8 楊翔;劉日光;;雙醋瑞因納米材料對大鼠骨性關(guān)節(jié)炎中p38絲裂原活化蛋白激酶的影響[A];第六屆西部骨科論壇暨貴州省骨科年會論文匯編[C];2010年
9 王文;武勝昔;李云慶;;c-fos反義寡核苷酸對蜜蜂毒誘導(dǎo)的大鼠痛反應(yīng)及脊髓背角前原速激肽AmRNA表達(dá)的影響[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年
10 朱建華;黃朝陽;劉忠;李閃;;辛伐他汀對高血壓大鼠心肌肥厚及細(xì)胞外信號調(diào)節(jié)激酶的影響[A];2004年浙江省心血管病學(xué)學(xué)術(shù)年會論文匯編[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 王儲;處理蜂蜇傷口應(yīng)慎重[N];中國中醫(yī)藥報(bào);2007年
2 本報(bào)記者 呂麗華;仁心妙手解民疾[N];朝陽日報(bào);2008年
3 鐘法權(quán);“三駕馬車”的高地[N];解放軍報(bào);2010年
4 王曉原;漫話蜂針療法[N];大眾衛(wèi)生報(bào);2007年
5 付得化;果樹打針治蟲技術(shù)[N];湖北科技報(bào);2006年
6 扶溝縣林業(yè)局 馬海燕 李貺;如何防治果樹蟲害[N];周口日報(bào);2006年
7 農(nóng)友;中藥材栽培選用農(nóng)藥有講究[N];四川科技報(bào);2001年
8 農(nóng)業(yè)部全國農(nóng)技推廣服務(wù)中心 梁桂梅 梁帝允;慎用“銳勁特”治理病蟲害[N];農(nóng)民日報(bào);2000年
9 韓素芹;謹(jǐn)防蜂群農(nóng)藥中毒[N];中國特產(chǎn)報(bào);2005年
10 王世恩 紀(jì)鵬 記者 張強(qiáng);“神經(jīng)病理性痛模型的創(chuàng)建”獲國家科技進(jìn)步一等獎[N];科技日報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 鄧朝霞;蛋白酶激活受體-2在海水吸入大鼠急性肺損傷中的作用及機(jī)制研究[D];第三軍醫(yī)大學(xué);2009年
2 王佳賀;大腸桿菌誘導(dǎo)人巨噬細(xì)胞系U937細(xì)胞凋亡及其機(jī)制的研究[D];中國醫(yī)科大學(xué);2006年
3 金英;阿魏酸鈉對抗淀粉樣β蛋白所致神經(jīng)毒性及機(jī)制的研究[D];中國醫(yī)科大學(xué);2006年
4 陳茂偉;MAPK信號轉(zhuǎn)導(dǎo)通路在肝細(xì)胞癌中的作用研究[D];廣西醫(yī)科大學(xué);2006年
5 王文;大鼠脊髓內(nèi)5-HT_(1A)受體參與5-HT促進(jìn)傷害性信息傳遞的效應(yīng)[D];第四軍醫(yī)大學(xué);2004年
6 姜春力;EGCG抑制移植靜脈內(nèi)膜增生及其機(jī)制的研究[D];中國醫(yī)科大學(xué);2005年
7 王大力;尿激酶型纖溶酶原激活劑在聲門上型喉癌中的表達(dá)及調(diào)節(jié)機(jī)制[D];中國醫(yī)科大學(xué);2005年
8 宋雪松;ERK-CREB信號傳導(dǎo)通路參與神經(jīng)病理性疼痛的形成與維持[D];吉林大學(xué);2007年
9 陳澤軍;p38MAPK在蛛網(wǎng)膜下腔出血后腦血管痙攣中的作用及機(jī)制的實(shí)驗(yàn)研究[D];蘇州大學(xué);2006年
10 成浩;脊髓小膠質(zhì)細(xì)胞在炎性痛覺過敏中的作用機(jī)制[D];蘇州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 郝鍵;外周絲裂原活化蛋白激酶在蜜蜂毒肽誘致病理性痛中的作用[D];第四軍醫(yī)大學(xué);2008年
2 郭家智;氧化應(yīng)激在2型糖尿病大鼠胰島素抵抗中的作用及信號轉(zhuǎn)導(dǎo)機(jī)制研究[D];昆明醫(yī)學(xué)院;2009年
3 姚志國;脊髓膠質(zhì)細(xì)胞在蜜蜂毒誘致的疼痛與炎癥中作用的研究[D];大連醫(yī)科大學(xué);2011年
4 吳永芳;NMDA受體抑制劑MK-801抑制大鼠蜜蜂毒炎性痛所致脊髓后角星型膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的激活[D];河北醫(yī)科大學(xué);2010年
5 鄭繼宏;P2x受體及NK受體在蜜蜂毒誘致的病理性痛中的作用[D];第四軍醫(yī)大學(xué);2001年
6 劉翔宇;5-羥色胺受體1亞型在大鼠脊髓和背根節(jié)內(nèi)的分布及其在蜜蜂毒致痛后的表達(dá)變化[D];中國人民解放軍第四軍醫(yī)大學(xué);2003年
7 李開誠;脊髓源性蛋白激酶在蜜蜂毒誘致的病理性痛中的作用[D];第四軍醫(yī)大學(xué);2002年
8 李昌林;大鼠痛敏感性的年齡相關(guān)性研究[D];第四軍醫(yī)大學(xué);2004年
9 葉薇;抑制細(xì)胞外信號調(diào)節(jié)激酶對三氧化二砷誘導(dǎo)胃癌細(xì)胞MGC-803凋亡的作用[D];中國醫(yī)科大學(xué);2005年
10 葛述科;PD98059對紫杉醇誘導(dǎo)大腸癌細(xì)胞CX1凋亡的調(diào)節(jié)作用[D];中國醫(yī)科大學(xué);2005年
,本文編號:2171236
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2171236.html