轉(zhuǎn)錄調(diào)節(jié)因子ATF4對破骨細胞分化的調(diào)節(jié)
[Abstract]:Bone is a constantly updated organ with multiple functions, including regulating calcium balance, supporting the soft tissue to provide hematopoiesis, and so on. These functions are accomplished through the regeneration of bone tissue, that is, remolding. Osteoclasts are the only multinucleated cells with bone absorptive capacity. Osteoclasts are derived from directional myeloid precursor cells. Cells and their secreted factors can regulate the differentiation and function of osteoclasts, especially bone marrow stromal cells and their secreted M-CSF and RANKL. osteolysis, which are important clinical problems in a variety of pathological injuries, such as cancer bone metastases, rheumatoid arthritis, osteoporosis and Paget's bone disease. Effective methods of inhibiting the excessive dissolving of bone or promoting bone formation in order to prevent or reduce the occurrence of osteoporosis and improve the quality of life of the patient. In the past ten years, there are many important breakthroughs in the analysis of osteoclast formation, the differentiation process and function of osteoclast are becoming more and more clear. Many factors play a heavy role in this process. The role of M-CSF, RANKL, OPG, PU.1 and MITF. Activation of transcription factor 4 (ATF4) is an important transcription factor. Through site directed mutagenesis, the earliest discovery of ATF4 is essential to the formation of eye lens fibers. More and more studies have shown that it plays an important role in the process of osteoblast differentiation and bone formation. Some studies have shown that ATF4 can indirectly regulate the differentiation and bone resorption of osteoclasts by affecting the amount of RANKL produced by osteoblasts. However, there has been no study on the differentiation of osteoclasts directly regulated by ATF4. We think that ATF4 can directly affect the differentiation of osteoclast.
First, we established the expression of ATF4 in the osteoclast cell line by the method of Western blot and immunohistochemical staining, and found the form of phosphorylation by the method of phosphatase treatment. Then we used the method of function loss and acquisition to establish the direct of this factor in the formation of osteoclast. In the bone of Atf4-/- mice, the proportion of the Trap positive region was significantly reduced and the signal intensity was weakened; in the differentiation experiment in vitro, the number of MNCs (more than three nuclei) formed by Atf4-/-BMM cells was also significantly reduced. And by the bone dissolving absorption experiment (Pitassay), it is known that Atf4 in vitro The number of bone resorption sags of osteoclasts formed in -/-BMM also decreased significantly, but the ratio of the number of bone resorption depression to the number of MNCs did not change significantly, indicating that the bone resorption capacity of osteoclasts was not significantly changed after ATF4 knockout. Under the drive of osteoclast specific Trap promoter, ATF4 was genetically modified in osteoclasts. At the time of arrival, the transgenic mice showed obvious osteopenia, the level of serum CTX increased significantly, and the formation of osteoclasts increased significantly in both in vivo and in vitro, and the level of gene expression related to osteoclast differentiation, both in protein level and in mRNA level, was significantly up-regulated.
Further studies have found that the number of colonies of GM-CFU formed by bone marrow cells from Atf4-/- mice is also significantly less than that in the wild type control group, and GM-CFU is the most primitive hematopoietic progenitor cells that have the ability to differentiate into osteoclasts.
To co culture Atf4-/-BMM cells with wild type osteoblasts or to stimulate their differentiation with high concentration of RANKL, the signal to the defect to osteoclast differentiation,.RANKL, is transmitted by its receptor RANK. We found that RANK in Atf4-/-BMM cells through immunohistochemical staining and immunological trace methods. The expression was significantly reduced and its mRNA level could not be raised by M-CSF. In addition, the activation of RANKL on multiple MAPK signaling pathways was also regulated by ATF4. In the absence of ATF4, the activation ability of RANKL to the three MAPK pathway was significantly decreased, while the NF-kB pathway was not affected by the PI3K/Akt path. There is no obvious adjustment.
So far, NFATcl is the most critical gene for osteoclast differentiation. The lack of ATF4 in both in vivo and in vitro leads to a significant decline in the expression level of NFATcl. Using retrovirus as the carrier, NFATcl is overexpressed in ATF4WT and KO BMM, and the positive MNCs of Trap can be increased in a dose-dependent manner. We use adenosis. As a carrier, ATF4 is overexpressed in BMM cells, and it is found that ATF4 can increase the expression level of NFATcl protein in a dose dependent manner. In vitro, ATF4 can be combined with NFATcl promoter and can activate the NFATcl (?) spoon promoter in a dose-dependent manner. In addition, ATF4 can be found by ChIP assay method and NFATcl near promoter. In BMM cells, the protein level of ATF4 is regulated by the M-CSF and the PI3K/AKT pathway. In the absence of M-CSF, the protein level of ATF4 is significantly reduced in a time dependent manner, and M-CSF can block this process of.M-CSF by PI3K/Akt, which can be blocked by M-CSF. The inhibitor LY294002 of the diameter is blocked, and with the increase of the concentration of LY2094002, the differentiation of BMM cells to the osteoclast is also corresponding to the lack of.ATF4, which can cause the differentiation of BMM to migrate from the osteoclast line to the macrophage system, which leads to the increase of the number of macrophages. Our research results show that ATF4 is regulating the osteoclast differentiation side. The surface has important internal effects, which may be used as a therapeutic target for osteoclast related bone diseases.
【學(xué)位授予單位】:天津醫(yī)科大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2010
【分類號】:R392.1
【相似文獻】
相關(guān)期刊論文 前10條
1 ;控制破骨細胞分化的機制獲新發(fā)現(xiàn)[J];中華中醫(yī)藥學(xué)刊;2008年09期
2 張曄,吳小濤;破骨細胞分化中的信號環(huán)路與調(diào)節(jié)[J];中國骨質(zhì)疏松雜志;2001年03期
3 袁成良,金小嵐;破骨細胞分化成熟調(diào)節(jié)的分子機理研究進展[J];中國病理生理雜志;2003年03期
4 王松;沈霖;;破骨細胞分化、形成過程中表現(xiàn)型特點[J];武漢體育學(xué)院學(xué)報;2007年04期
5 李忠武,章明放;白細胞介素對破骨細胞分化與功能調(diào)控研究的進展[J];中國骨質(zhì)疏松雜志;2003年01期
6 孟祥閣;;破骨細胞分化的信號轉(zhuǎn)導(dǎo)系統(tǒng)[J];科協(xié)論壇(下半月);2009年01期
7 陳莉;Bronwen Evans;Daniel Aeschlimann;;白介素-23對破骨細胞分化及功能直接調(diào)節(jié)作用的實驗研究[J];北京口腔醫(yī)學(xué);2010年06期
8 張曄;;破骨細胞分化過程中的信號傳導(dǎo)[J];國外醫(yī)學(xué)(老年醫(yī)學(xué)分冊);2001年02期
9 劉瑞;戴晨琳;鄭紡;郭善一;王寶利;邱明才;;破骨細胞抑制性凝集素胞外段可抑制骨髓干細胞向破骨細胞分化[J];天津醫(yī)藥;2010年08期
10 張超;孫新華;;物理因素對破骨細胞分化及功能的影響[J];中國骨與關(guān)節(jié)外科;2012年03期
相關(guān)會議論文 前10條
1 陳曉;朱國英;顧淑珠;邱晶;;低劑量鎘暴露刺激破骨細胞分化[A];中華醫(yī)學(xué)會第六次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議暨中華醫(yī)學(xué)會骨質(zhì)疏松和骨礦鹽疾病分會成立十周年論文匯編[C];2011年
2 王軍;趙志河;羅頌椒;;張應(yīng)力刺激對成骨細胞調(diào)控破骨細胞分化成熟效應(yīng)的影響[A];第四軍醫(yī)大學(xué)口腔醫(yī)院2004第七屆全國口腔正畸學(xué)術(shù)會議論文匯編[C];2004年
3 賈鵬;徐又佳;;鐵離子對破骨細胞分化及骨吸收的影響[A];中華醫(yī)學(xué)會第六次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議暨中華醫(yī)學(xué)會骨質(zhì)疏松和骨礦鹽疾病分會成立十周年論文匯編[C];2011年
4 郭勇;郭春;張西正;閆玉仙;李瑞欣;張春秋;王亮;;相同機械應(yīng)力對成骨細胞分化和破骨細胞分化的影響[A];天津市生物醫(yī)學(xué)工程學(xué)會第30次學(xué)術(shù)年會暨生物醫(yī)學(xué)工程前沿科學(xué)研討會論文集[C];2010年
5 許多榮;蘇暢;鄒外一;;RANK可能通過新的信號途徑調(diào)節(jié)破骨細胞分化[A];第12屆全國實驗血液學(xué)會議論文摘要[C];2009年
6 趙國陽;徐又佳;狄東華;;高鐵環(huán)境對成骨細胞、破骨細胞分化的影響[A];中華醫(yī)學(xué)會第七次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議論文匯編[C];2013年
7 許多榮;許輝茹;王荷花;李娟;;不同濃度的地塞米松體外對人的成骨細胞及破骨細胞分化的影響[A];第13屆全國實驗血液學(xué)會議論文摘要[C];2011年
8 Ke Gan;Wenfeng Tan;Miaojia Zhang;;THE ROLE OF IGURATIMOD(T-614) IN OSTEOCLAST DIFFERENTIATION AND BONE RESORPTION[A];中華醫(yī)學(xué)會第五次中青年骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議論文集[C];2013年
9 韋秀寧;;類風(fēng)濕關(guān)節(jié)炎滑膜成纖維細胞通過RANKL促進破骨細胞分化和活化[A];中華醫(yī)學(xué)會第六次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議暨中華醫(yī)學(xué)會骨質(zhì)疏松和骨礦鹽疾病分會成立十周年論文匯編[C];2011年
10 何成;樓覺人;;畢赤酵母表達RANKL-HBsAg作為治療性骨質(zhì)疏松癥疫苗的研究[A];第五次全國免疫診斷暨疫苗學(xué)術(shù)研討會論文匯編[C];2011年
相關(guān)重要報紙文章 前1條
1 記者 杜華斌;科學(xué)家發(fā)現(xiàn)RANKL蛋白可“召喚”癌細胞轉(zhuǎn)移[N];科技日報;2006年
相關(guān)博士學(xué)位論文 前10條
1 魯興;整合素β1在細胞因子誘導(dǎo)的破骨細胞分化中的作用及其機制[D];山東大學(xué);2017年
2 王洪凱;喹硫平抑制破骨細胞分化的作用觀察及機制研究[D];第三軍醫(yī)大學(xué);2015年
3 宋瑞龍;OPG對破骨細胞分化過程中細胞骨架的影響及其分子機理[D];揚州大學(xué);2014年
4 熊琦;蛋白質(zhì)組學(xué)在破骨細胞分化形成機制研究中的應(yīng)用[D];中國人民解放軍醫(yī)學(xué)院;2016年
5 杜少華;miR-146a調(diào)控破骨細胞分化以及在老年性骨質(zhì)疏松癥中的作用機制研究[D];浙江大學(xué);2016年
6 魏明;MOTS-c對OVX小鼠脂代謝異常和骨丟失的保護效能與機制研究[D];第四軍醫(yī)大學(xué);2016年
7 許琰;新型抗氧化蛋白PAMM及其在破骨細胞分化和雌激素缺乏所致骨質(zhì)疏松中的作用[D];昆明醫(yī)科大學(xué);2016年
8 王晨;重組腺病毒介導(dǎo)siCXCR2抑制磨損顆粒誘導(dǎo)破骨細胞分化成熟的作用[D];重慶醫(yī)科大學(xué);2016年
9 王惠寧;MiR-20a對破骨細胞分化的影響及其作用機制的研究[D];山東大學(xué);2017年
10 曹惠玲;轉(zhuǎn)錄調(diào)節(jié)因子ATF4對破骨細胞分化的調(diào)節(jié)[D];天津醫(yī)科大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 常亮;C-2,,C-3并吡唑白樺脂酸水溶性衍生物的設(shè)計、合成及其抑制破骨細胞分化成熟活性研究[D];華東師范大學(xué);2014年
2 正王宇;瘦素通過抑制PPARγ的表達抑制RAW264.7細胞向破骨細胞分化[D];重慶醫(yī)科大學(xué);2015年
3 高倩;OPG對破骨細胞分化的影響及其Rho信號轉(zhuǎn)導(dǎo)機制[D];揚州大學(xué);2015年
4 朱云;小鼠MafB過表達對單核細胞向破骨細胞分化的影響[D];重慶醫(yī)科大學(xué);2015年
5 王靜;NRAGE對破骨細胞分化的調(diào)控作用及機制研究[D];南京師范大學(xué);2013年
6 彭秋月;雷公藤紅素通過調(diào)控選擇素-P的表達抑制破骨細胞分化的研究[D];南京醫(yī)科大學(xué);2016年
7 楊五洲;MiR-216b靶向抑制ABCG1表達對破骨細胞分化、融合及生存的影響[D];南華大學(xué);2016年
8 黃錦平;膽汁酸膜受體TGR5通過激活cAMP-AMPK信號通路調(diào)控破骨細胞分化和功能[D];華東師范大學(xué);2016年
9 王巖;TGF-β及其受體信號通路在氟調(diào)控破骨細胞分化中的作用[D];吉林大學(xué);2017年
10 徐鋒;過表達Klotho抑制RAW264.7細胞向破骨細胞分化[D];重慶醫(yī)科大學(xué);2017年
本文編號:2164891
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2164891.html