人丘腦的斷層影像解剖及三維重建
本文選題:丘腦 + MRI; 參考:《重慶醫(yī)科大學(xué)》2013年碩士論文
【摘要】:目的和意義 丘腦是間腦中最大的一部分,呈對(duì)稱分布于第三腦室兩側(cè)的大卵圓形灰質(zhì)復(fù)合體,大小約為3cm(矢徑)×1.5cm(橫徑)×1.5(縱徑),由許多功能性質(zhì)不同的神經(jīng)核團(tuán)組成,內(nèi)部被Y型的內(nèi)髓板分為前核、內(nèi)側(cè)核和外側(cè)核三大部分。丘腦接受身體內(nèi)、外刺激所引起的所有沖動(dòng),經(jīng)中繼、整合后,最后投射到大腦皮質(zhì)產(chǎn)生感覺和意識(shí),是最大的皮質(zhì)下接受站和中繼站。長(zhǎng)期以來丘腦的形態(tài)描述和體積測(cè)量等方面的研究均限于尸體。隨著神經(jīng)影像學(xué)技術(shù)的進(jìn)步,使得在活體上觀測(cè)丘腦及相關(guān)結(jié)構(gòu)的形態(tài)改變成為可能,有望為診斷某些神經(jīng)精神疾病提供真實(shí)可信的依據(jù)。基于此,本研究結(jié)合成人頭部橫斷面形態(tài)及正常成人活體頭部磁共振圖片,研究丘腦及周圍結(jié)構(gòu)的正常解剖形態(tài),并測(cè)量斷面上丘腦橫徑、丘腦矢徑、丘腦面積等多項(xiàng)線性指標(biāo);同時(shí)運(yùn)用手工分割測(cè)量法,IBASPM自動(dòng)分割測(cè)量法進(jìn)行丘腦體積的測(cè)量,以期為正常成人丘腦形態(tài)數(shù)據(jù)的統(tǒng)一提供有價(jià)值的信息。并在此基礎(chǔ)上運(yùn)用Materialise’s Interactive Medical Image Control System (Mimics)10.0醫(yī)學(xué)三維重建軟件重建丘腦的可視化三維動(dòng)態(tài)模型,以期從三維角度為臨床診療提供丘腦等結(jié)構(gòu)的正常形態(tài)學(xué)資料。 方法和材料 1選取正常成人頭部橫斷面標(biāo)本30例(男17例,女13例),選用丘腦顯示較好的室間孔層面對(duì)丘腦、尾狀核頭、殼等興趣結(jié)構(gòu)橫徑、矢徑和面積,以及丘腦長(zhǎng)度和丘腦寬度(長(zhǎng)軸中點(diǎn)1/2垂線),內(nèi)囊前肢、后肢與正中矢狀面夾角,,側(cè)腦室前角間距等數(shù)據(jù)進(jìn)行測(cè)量。 2選取70例(男35例,女35例)經(jīng)常規(guī)MR序列掃描證明健康成人,年齡20~45歲,平均30歲,右利手,經(jīng)常規(guī)簡(jiǎn)易精神狀態(tài)量表檢查無異常。所有掃描均使用美國GE Signa HDxt3.0T MRI系統(tǒng),掃描野包含整個(gè)大腦。采用三維快速擾相梯度回波序列獲得全腦高分辨率圖像,掃描參數(shù):TR8.3ms,TI400ms,TE3.3ms, FA15o,矩陣256×256,Nex1,掃描視野24cm×24cm,無間隔連續(xù)掃描,層數(shù)156層,層厚1mm。 3選取30例(男性7例,女性23例)健康漢族成年人,使用GE3.0T核磁共振儀對(duì)丘腦進(jìn)行斜冠狀位MR掃描;3D BRAVO序列采集,掃描范圍覆蓋全腦,序列參數(shù)為:TR8.4,TE3.2,TI450,F(xiàn)OV24.0,NEX1,矩陣224×224;無間隔連續(xù)掃描,層厚1mm;掃描后所得數(shù)據(jù)傳入ADW4.2圖像處理工作站,測(cè)量丘腦長(zhǎng)、丘腦寬、側(cè)腦室前角間距等數(shù)據(jù)。同時(shí)運(yùn)用手工分割測(cè)量法,IBASPM自動(dòng)分割測(cè)量法進(jìn)行丘腦體積的測(cè)量。 4選用1例丘腦的MRI平掃數(shù)據(jù),利用Mimics醫(yī)學(xué)三維重建軟件,重建丘腦的可視化三維動(dòng)態(tài)模型。 結(jié)果 第一部分丘腦的斷層影像解剖 一、丘腦的斷面解剖 在斷面上經(jīng)標(biāo)準(zhǔn)化后各組樣本采用單因素方差分析,結(jié)果顯示丘腦橫徑、丘腦矢徑、丘腦長(zhǎng)、丘腦寬、丘腦面積未見性差和側(cè)差。方差齊性檢驗(yàn)后利用Pearson相關(guān)分析,結(jié)果顯示丘腦長(zhǎng)與殼橫徑呈負(fù)相關(guān);丘腦寬與殼矢徑呈負(fù)相關(guān);丘腦面積與尾狀核頭橫徑、尾狀核頭面積、殼橫徑、殼矢徑、殼面積呈負(fù)相關(guān)。 二、丘腦的MRI解剖 MRI成像顯示丘腦矢徑、丘腦長(zhǎng)具有顯著性差,丘腦橫徑、丘腦面積具有顯著側(cè)差。數(shù)據(jù)經(jīng)方差齊性檢驗(yàn)后,利用Pearson相關(guān)分析顯示:丘腦矢徑、丘腦長(zhǎng)與尾狀核頭矢徑、殼核矢徑、殼核面積成負(fù)相關(guān),丘腦寬與尾狀核頭矢徑、殼核橫徑、殼核矢徑、殼核面積成正相關(guān)。 三、丘腦的體積測(cè)量 手動(dòng)測(cè)得丘腦體積及丘腦長(zhǎng)存在顯著性側(cè)差(P0.05),其余各數(shù)據(jù)無顯著性差異。手動(dòng)測(cè)量法中與標(biāo)準(zhǔn)化丘腦體積相關(guān)程度最為密切的線性指標(biāo)依次是丘腦長(zhǎng)、側(cè)腦室前角間距。IBASPM測(cè)量法中與標(biāo)準(zhǔn)化丘腦體積相關(guān)程度最為密切的線性指標(biāo)是丘腦長(zhǎng)。 第二部分丘腦三維重建及臨床應(yīng)用 應(yīng)用Mimics10.01軟件成功建立丘腦三維可視化模型,所獲得的三維模型幾何形態(tài)逼真。模型可以用不同顏色顯示,可進(jìn)行放大、縮小、旋轉(zhuǎn)等多個(gè)方位的觀察,利用Mimics軟件測(cè)量工具可對(duì)模型進(jìn)行測(cè)量分析。三維模型圖像可保存為JPEG等格式,或錄制成AVI格式動(dòng)態(tài)輸出。 主要結(jié)論 (1)丘腦參數(shù)與其周圍重要結(jié)構(gòu)參數(shù)存在線性關(guān)系,丘腦周圍結(jié)構(gòu)的變化可作為研究丘腦形態(tài)變化的參考指標(biāo)。 (2)丘腦長(zhǎng)可作為丘腦形態(tài)變化的初篩指標(biāo)。 (3)基于MRI薄層掃描數(shù)據(jù)重建的活體丘腦三維可視化模型,具有較高的真實(shí)性和準(zhǔn)確性,可從三維角度為臨床診療提供有關(guān)丘腦的正常形態(tài)學(xué)資料。
[Abstract]:Purpose and significance
The thalamus is the largest part of the diencephalon, a large oval gray complex distributed symmetrically on both sides of the third ventricle. The size is about 3cm (diameter) * 1.5cm (transverse diameter) * 1.5 (longitudinal diameter). It is composed of many nuclei with different functional properties. The internal medullary plate of the Y type is divided into the anterior nucleus, the medial nucleus and the lateral nucleus three parts. The thalamus accepts the body. All the impulses caused by external stimulation, followed by relay, were integrated, and finally projected into the cerebral cortex to produce sensations and consciousness, the largest subcortical reception station and relay station. Long term studies of the morphological description and volume measurement of the thalamus were limited to the corpses. With the progress of neuroimaging techniques, the thalamus and the thalamus were observed on the living body. In this study, the normal anatomy of the thalamus and its surrounding structures, the transverse diameter of the thalamus, the thalamus sagittal diameter, and the hillock were measured in combination with the adult head cross section morphology and the normal adult head magnetic resonance imaging. A number of linear indices such as the area of the brain, and the measurement of the volume of thalamus by the manual division measurement and IBASPM automatic segmentation, in order to provide valuable information for the unification of normal adult thalamus morphological data, and on this basis, use Materialise 's Interactive Medical Image Control System (Mimics) 10 medical three The 3D reconstruction software is used to reconstruct the visualized three-dimensional dynamic model of the thalamus in order to provide the normal morphological data of the thalamus and other structures for clinical diagnosis and treatment from a three-dimensional perspective.
Methods and materials
1 selected 30 cases of normal adult head cross section specimens (17 men, 13 women). The thalamus showed the better interventricular pore layer in the thalamus, the head of the caudate nucleus and the shell, the diameter and area, the length of the thalamus and the width of the thalamus (1/2 perpendicular to the middle point of the long axis), the anterior limb of the inner capsule, the angle of the posterior limb and the median sagittal plane, the distance between the anterior horn of the lateral ventricle and so on. According to the measurement.
2 70 cases (35 males and 35 females) were scanned by regular MR sequence scanning to prove that healthy adults were 20~45 years old, mean age of 30, right hand, and regular simple mental state examination without abnormality. All scans used the GE Signa HDxt3.0T MRI system in the United States, and the whole brain was included in the scan field. The whole brain was obtained by a three dimensional fast phase gradient echo sequence. High resolution image, scanning parameters: TR8.3ms, TI400ms, TE3.3ms, FA15o, matrix 256 x 256, Nex1, scanning visual field 24cm x 24cm, continuous scan without interval, layer number 156 layer, layer thickness 1mm.
3 3 healthy Han Adults (male 7, female 23) were selected to scan the thalamus with MR scan on the hypothalamus. The 3D BRAVO sequence was collected and the scanning range was covered with the whole brain. The sequence parameters were TR8.4, TE3.2, TI450, FOV24.0, NEX1, and matrix 224 x 224; no continuous septum scanning, layer thickness 1mm; the data obtained after scanning were sent to ADW. 4.2 the data of the length of thalamus, the width of thalamus and the space of the anterior horn of the lateral ventricle were measured by the 4.2 image processing station, and the volume of thalamus was measured by manual segmentation and automatic segmentation.
4 1 cases of thalamus MRI scan data were selected, and Mimics 3D reconstruction software was used to reconstruct the 3D dynamic model of the thalamus.
Result
The first part of the sectional anatomy of the thalamus
First, the sectional anatomy of the thalamus
A single factor analysis of variance was used on the cross-section of the samples. The results showed that the transverse diameter of thalamus, the thalamus sagittal diameter, the length of thalamus, the width of thalamus, the area of thalamus, and the side difference of the thalamus. After the homogeneity of variance, the Pearson correlation analysis showed that the length of thalamus was negatively correlated with the transverse diameter of the shell; the thalamus width was negatively correlated with the shell sagittal diameter; the thalamus surface was negatively correlated; the thalamus width was negatively correlated with the shell diameter. The transverse diameter of the caudate nucleus was negatively correlated with the area of the caudate nucleus, the transverse diameter of the shell, the diameter of the shell, and the shell area.
Two, MRI anatomy of the thalamus
MRI imaging showed the sagittal diameter of thalamus, the thalamus length had significant difference, the thalamus transverse diameter and the thalamus area had significant side difference. After the variance homogeneity test, the Pearson correlation analysis showed that the sagittal diameter of the thalamus, the length of the thalamus and the head of the caudate nucleus, the sagittal diameter of the putamen, the area of the putamen, the diameter of the thalamus, the diameter of the caudate nucleus, the transverse diameter of the putamen, the putamen The diameter of the shell is positively related to the area of the shell.
Three, the measurement of the volume of the thalamus
There was a significant lateral difference (P0.05) between the volume of thalamus and the length of thalamus by manual measurement. There was no significant difference in the rest of the data. The linear index, which was most closely related to the standard thalamus volume in the manual measurement, was in turn the length of the thalamus and the most close linear finger with the standard hypothalamus volume in the.IBASPM measurement of the lateral ventricle. The mark is the length of the thalamus.
Three dimensional reconstruction of the thalamus and its clinical application in second parts
The three-dimensional model of thalamus is successfully established by using Mimics10.01 software. The 3D model is realistic. The model can be displayed in different colors and can be observed in many directions, such as magnification, reduction, rotation and so on. The model can be measured by Mimics software measurement tools. The 3D model image can be stored as JPEG and so on. Or recorded as AVI format dynamic output.
Main conclusions
(1) there is a linear relationship between the thalamic parameters and the surrounding important structural parameters. The changes in the structure around the thalamus can be used as a reference index for studying the morphological changes of the thalamus.
(2) thalamic length can be used as a preliminary screening indicator for the morphological changes of the thalamus.
(3) the three-dimensional visualization model of the living thalamus based on the MRI TLC scanning data has high authenticity and accuracy. It can provide the normal morphological data of the thalamus for clinical diagnosis and treatment from the three-dimensional angle.
【學(xué)位授予單位】:重慶醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:R322.81
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 田菊霞,盧洪煊,樓佳慶,柴東喬;豆?fàn)詈伺c丘腦三維空間形態(tài)和位置的研究[J];解剖學(xué)雜志;2000年01期
2 王躍華;林志國;朱敏偉;付宜利;高文朋;;中國人MRI立體定向丘腦數(shù)字化圖譜的研制[J];立體定向和功能性神經(jīng)外科雜志;2008年02期
3 董問天;劉琳;裴新龍;袁慧書;謝敬霞;閻浩;張岱;;基于象素形態(tài)測(cè)量法分析精神分裂癥患者腦白質(zhì)結(jié)構(gòu)[J];中國組織工程研究與臨床康復(fù);2007年13期
4 李亞迪;何慧瑾;馮曉源;丁玎;郭起浩;湯偉軍;趙倩華;陳美蓉;;基于體素的輕度阿爾茨海默病全腦灰質(zhì)MRI成像分析[J];中國醫(yī)學(xué)計(jì)算機(jī)成像雜志;2009年02期
5 俞學(xué)斌,沈宏,金國良;丘腦的計(jì)算機(jī)三維重建及其臨床意義[J];浙江醫(yī)學(xué);2005年05期
6 林支付,盧洪煊,沈宏,葛霽光;丘腦的計(jì)算機(jī)三維重建及其臨床意義[J];中國臨床解剖學(xué)雜志;2000年01期
7 劉智華;錢學(xué)華;周庭永;李林宏;徐偉;張慧;鄭登儒;呂發(fā)金;;人腦海馬結(jié)構(gòu)的形態(tài)測(cè)量[J];中國臨床解剖學(xué)雜志;2011年05期
8 王躍華;張相彤;付宜利;高文朋;林志國;;基于MRI的老年人丘腦體積的研究[J];中國老年學(xué)雜志;2008年13期
本文編號(hào):2096031
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2096031.html