下肢血管的三維重建及相關(guān)組織瓣設(shè)計(jì)改進(jìn)的解剖學(xué)研究
本文選題:血管造影 + 三維重建。 參考:《南方醫(yī)科大學(xué)》2009年博士論文
【摘要】: 研究背景和目的: 隨著工業(yè)和現(xiàn)代化發(fā)展,各種交通事故和外傷導(dǎo)致的人體皮膚及其他組織缺損日趨增多;由于環(huán)境污染加劇,腫瘤患者增多,腫瘤切除后需要組織填充以恢復(fù)外形和覆蓋創(chuàng)面;由于生活水平的提升,患者對(duì)于創(chuàng)傷修復(fù)的美學(xué)要求也越來(lái)越高。針對(duì)不同部位,不同程度的創(chuàng)傷,使用何種組織瓣進(jìn)行修復(fù),是臨床醫(yī)生和外科學(xué)工作者長(zhǎng)期探索的問(wèn)題。 1984年徐達(dá)傳等首先報(bào)道了游離股前外側(cè)皮瓣,羅力生等首先將該皮瓣應(yīng)用于臨床。股前外側(cè)皮瓣具有解剖標(biāo)志清楚、血管蒂長(zhǎng)、口徑粗、面積大、解剖變異少以及切取容易和供區(qū)較隱蔽的等優(yōu)點(diǎn),是股部較為理想的皮瓣供區(qū)。該皮瓣在首次報(bào)道后的短期內(nèi)得以廣泛應(yīng)用,而且對(duì)其進(jìn)一步的基礎(chǔ)研究與臨床應(yīng)用術(shù)式探討亦在不斷深入,與之相應(yīng)的解剖與臨床應(yīng)用的報(bào)道層出不窮,與其應(yīng)用相關(guān)的手術(shù)方法或改進(jìn)術(shù)式亦時(shí)有出現(xiàn)。 2005年,劉會(huì)仁報(bào)道了以旋股外側(cè)動(dòng)脈降支為蒂的分葉肌皮瓣的臨床應(yīng)用,認(rèn)為以旋股外側(cè)動(dòng)脈降支為血管蒂,其皮支所帶股前外側(cè)皮膚及皮下組織形成皮瓣,而其肌支攜帶部分股外側(cè)肌形成肌瓣,根據(jù)創(chuàng)面的大小和形態(tài),利用不同的肌支間距調(diào)整肌瓣的位置與大小,以切取與創(chuàng)面相適應(yīng)的分葉肌皮瓣,臨床應(yīng)用8例,獲得滿(mǎn)意效果。該術(shù)式設(shè)計(jì)新穎,操作簡(jiǎn)易,有很好的臨床應(yīng)用價(jià)值,值得推廣,但其解剖學(xué)基礎(chǔ)尚少見(jiàn)報(bào)道。 小腿下1/3及足踝部軟組織缺損伴有骨、鋼板或肌腱外露是臨床常見(jiàn)的問(wèn)題,雖然處理方法較多,但每種方法均存在各自的不足,特別是有些方法由于操作較復(fù)雜或失敗率較高,難以在基層醫(yī)院推廣應(yīng)用。 2003年鄧國(guó)三等報(bào)道了以腓骨短肌肌瓣修復(fù)小腿下1/3及足踝部軟組織缺損,取得滿(mǎn)意療效。他認(rèn)為因?yàn)殡韫嵌碳∮呻鑴?dòng)脈供血,一般軟組織挫傷不容易損傷到腓骨短肌的營(yíng)養(yǎng)血管,因此可在很多其他組織瓣不能使用的情況下仍能應(yīng)用;同時(shí)手術(shù)操作簡(jiǎn)便,時(shí)間短,成功率高,對(duì)于供區(qū)幾乎沒(méi)有功能及外形上的影響。 然而,腓骨短肌肌瓣修復(fù)小腿中下部創(chuàng)傷的不足之處也是顯而易見(jiàn)的,因其不帶皮膚與筋膜,只起到填補(bǔ)缺損的作用,而不能一次性完成創(chuàng)面的皮膚覆蓋,需要在肌瓣的表面進(jìn)行中厚皮片的游離移植。 1989年Hidalgo首次將游離腓骨瓣用于下頜骨缺損的修復(fù),獲得較好的效果,此后,用游離腓骨骨(皮)瓣重建與修復(fù)下頜骨缺損逐漸成為經(jīng)典術(shù)式。該術(shù)式提示腓骨骨瓣,腓骨肌瓣與肌皮瓣可以聯(lián)合使用,可以根據(jù)受區(qū)的特點(diǎn)與需要而進(jìn)行靈活的設(shè)計(jì)與切取,形成復(fù)合組織瓣或嵌合組織瓣。 經(jīng)過(guò)多年的臨床應(yīng)用與解剖學(xué)基礎(chǔ)研究,腓骨瓣的血供基礎(chǔ)與臨床應(yīng)用均已清楚與明晰。而對(duì)于腓骨長(zhǎng)肌、腓骨短肌各自的血供特點(diǎn),及與之相關(guān)的皮動(dòng)脈的分布與吻合情況卻少有相關(guān)資料,尤其是逆行腓骨長(zhǎng)肌肌皮瓣與腓骨短肌肌皮瓣的血供來(lái)源,其是否適應(yīng)于小腿中下部及足背部缺損的修復(fù),及手術(shù)中應(yīng)該注意的問(wèn)題等等,仍有進(jìn)一步研究的必要。 隨著對(duì)人體形態(tài)學(xué)研究的深入和計(jì)算機(jī)技術(shù)在醫(yī)學(xué)領(lǐng)域的運(yùn)用與發(fā)展,人體解剖結(jié)構(gòu)的三維可視化已經(jīng)成為可能。在可視化模型上進(jìn)行人體解剖結(jié)構(gòu)的多方位展示,已在醫(yī)學(xué)教學(xué)和臨床實(shí)踐中發(fā)揮了重要的作用。在人體可視化研究的基礎(chǔ)上建立可供手術(shù)和術(shù)前制定方案的虛擬環(huán)境,在外科手術(shù)教學(xué)和仿真訓(xùn)練等方面,具有不可替代和令人鼓舞的應(yīng)用前景。近年來(lái),與三維虛擬有關(guān)的人體解剖學(xué)研究已有較多報(bào)道。對(duì)人體標(biāo)本進(jìn)行血管灌注與放射造影,從三維角度對(duì)局部區(qū)域的血管進(jìn)行研究,是近年發(fā)展起來(lái)并且日臻成熟的血管研究方法。 該方法通過(guò)血管造影,利用計(jì)算機(jī)軟件對(duì)血管進(jìn)行三維重建,然后從不同角度與層次對(duì)該區(qū)域的血管進(jìn)行三維顯示,并能與同一區(qū)域的骨、肌、皮等進(jìn)行組合顯示,能使用透明等方式明確該區(qū)域的血管走行與分布,對(duì)于該區(qū)域組織瓣的設(shè)計(jì)改進(jìn)提供直觀,實(shí)用性強(qiáng)的解剖學(xué)基礎(chǔ)。 然而虛擬結(jié)構(gòu)是否能完全代替實(shí)體,兩者間是否有差異,兩者的優(yōu)越性和局限性分別是什么?這些問(wèn)題都還有待進(jìn)一步研究與認(rèn)識(shí)。 本文采用30例標(biāo)本,結(jié)合巨微解剖與三維重建技術(shù),擬對(duì):(1)以旋股外側(cè)動(dòng)脈降支為蒂分葉肌皮瓣的解剖學(xué)基礎(chǔ)進(jìn)行研究;(2)利用同樣的方法,研究逆行腓骨肌皮瓣的血供來(lái)源、取瓣面積,旋轉(zhuǎn)點(diǎn)位置及臨床注意事項(xiàng)等;(3)將三維重建的虛擬的下肢血管,與實(shí)體結(jié)構(gòu)進(jìn)行對(duì)比,以探討虛擬結(jié)構(gòu)是否能完全代替實(shí)體,兩者間是否有差異,兩者的優(yōu)越性和局限性等等問(wèn)題。 方法: (1)新鮮下肢標(biāo)本20側(cè),動(dòng)脈灌注紅色乳膠,在大腿部解剖觀測(cè)旋股外側(cè)動(dòng)脈降支的起始、走行、分支、分布的情況,特別是其本干進(jìn)入股外側(cè)肌的部位,及其在股外側(cè)肌內(nèi)的分支、分布與吻合情況。在小腿部解剖與觀測(cè)腓動(dòng)脈在腓骨長(zhǎng)肌、腓骨短肌及其表面皮膚與皮下組織中的起始、走行、分支、分布的情況,特別是肌皮穿支血管的走行與分布情況。 (2)另6側(cè)新鮮下肢標(biāo)本,股動(dòng)脈灌注明膠-氧化鉛混懸液,冷凝后行CT掃描,利用三維軟件重建下肢動(dòng)脈及其分支。觀察旋股外側(cè)動(dòng)脈降支與股外側(cè)肌、股前外側(cè)部皮膚、股骨等結(jié)構(gòu)的位置關(guān)系。為旋股外側(cè)動(dòng)脈降支為蒂分葉肌皮瓣的設(shè)計(jì)與切取提供直觀的解剖學(xué)依據(jù)。觀察小腿外側(cè)部血管的走行與吻合情況及其與周?chē)Y(jié)構(gòu)的位置關(guān)系,為逆行腓骨肌皮瓣的設(shè)計(jì)與臨床應(yīng)用提供直觀的解剖學(xué)依據(jù)。 (3)另用新鮮人體下肢標(biāo)本各2側(cè),分別從動(dòng)脈與靜脈灌注顯影劑,CT掃描后利用三維軟件進(jìn)行分割與重建;解剖掃描后的標(biāo)本,分別顯示各自的血管系統(tǒng)。將三維圖形與標(biāo)本照片進(jìn)行比較,以研究虛擬結(jié)構(gòu)是否能完全代替實(shí)體,兩者間是否有差異,兩者的優(yōu)越性和局限性等等問(wèn)題。 結(jié)果: 1、80.8%的降支發(fā)自旋股外側(cè)動(dòng)脈,平均外徑3.7mm,于股直肌深面,沿股外側(cè)肌前緣下降,在距其起始處9.0cm處分為內(nèi)、外兩側(cè)支;外側(cè)支營(yíng)養(yǎng)股外側(cè)肌,肌外血管蒂長(zhǎng)8.1cm,在股外側(cè)肌中段肌內(nèi)行走的全程發(fā)出6.6支口徑1.0mm的肌支或肌皮支,平均支間距18.6mm。相鄰分支間在肌內(nèi)有明顯的吻合。旋股外側(cè)動(dòng)脈外側(cè)支的終支與膝上外側(cè)動(dòng)脈升支在股外側(cè)肌內(nèi)吻合,下行達(dá)膝關(guān)節(jié)附近,參加膝關(guān)節(jié)動(dòng)脈網(wǎng)的形成。除1例外,25側(cè)標(biāo)本共出現(xiàn)皮支63支,外徑0.8mm,其中肌間隙穿支占23.8%,而肌皮穿支占76.2%。26側(cè)中有15側(cè)肢體出現(xiàn)直徑0.8mm的高位皮動(dòng)脈19支。 2、腓動(dòng)脈起始外徑3.7mm,沿途發(fā)出多條肌支,供給比目魚(yú)肌、拇長(zhǎng)屈肌、腓骨長(zhǎng)、短肌及表面皮膚。腓動(dòng)脈起始處至第一滋養(yǎng)動(dòng)脈干長(zhǎng)52.1mm,起始處平均管徑3.0mm。在腓骨中部發(fā)出數(shù)支弓狀動(dòng)脈,最粗的1支外徑平均為1.5mm,繞過(guò)腓骨至腓骨骨膜表面,而后沿腓骨下行,沿途發(fā)出2-4個(gè)肌支營(yíng)養(yǎng)腓骨短肌。腓動(dòng)脈發(fā)出皮支5.4支,從比目魚(yú)肌與腓骨長(zhǎng)肌間隙穿出,供血于小腿外側(cè)皮膚,平均外徑0.7mm,皮穿支常有1-2條伴行靜脈。腓動(dòng)脈穿支的血管蒂可游離長(zhǎng)度為3.5cm。腓動(dòng)脈末段在脛腓骨骨間膜中穿出,外徑1.2mm,分為升支和降支。降支沿腓骨和外踝前緣下降并與外踝前動(dòng)脈吻合形成外踝前動(dòng)脈弓,外徑1.3mm。腓骨短肌肌腹的上部有一支較粗的腓淺動(dòng)脈發(fā)自脛前動(dòng)脈,向前穿骨間膜行于腓骨長(zhǎng)肌與小腿前群肌之間,血管管徑1.8mm,行向下?tīng)I(yíng)養(yǎng)腓骨短肌、腓淺神經(jīng)和小腿前外側(cè)部皮膚。腓淺神經(jīng)的營(yíng)養(yǎng)血管平均每側(cè)有5.4支,包括起始處的腓淺動(dòng)脈、腓動(dòng)脈穿支的升、降支及足背動(dòng)脈的皮支。 3、利用三維軟件可分割與重建出獨(dú)立的骨、血管、皮膚、肌肉,所重建的圖形可以分別單獨(dú)顯示,也可以組合顯示?梢詮牟煌瑢哟,不同角度觀察血管的走行、分布、吻合等情況。 重建圖像顯示旋股外側(cè)動(dòng)脈降支發(fā)出一系列分支至股外側(cè)肌,部分分支穿過(guò)股外側(cè)肌至深淺筋膜和皮膚。在股外側(cè)肌內(nèi)的分支之間有明顯的相互吻合,位于深淺筋膜中的皮動(dòng)脈之間亦有明顯的相互吻合,這些結(jié)果為旋股外側(cè)動(dòng)脈降支為蒂的肌瓣,皮瓣乃至于肌皮瓣提供了直觀的解剖學(xué)基礎(chǔ)。 重建圖像顯示腓動(dòng)脈有穿支和交通支分別與脛前動(dòng)脈、脛后動(dòng)脈相溝通,發(fā)現(xiàn)腓骨短肌肌支、皮穿支與周?chē)鞲裳苤g有廣泛而豐富的吻合。 采集三維重建的股前外側(cè)血管圖形,利用Photoshop軟件使之與標(biāo)本照片復(fù)合,并進(jìn)行一定的調(diào)整、定位與透明,可在同一張圖片上觀察到標(biāo)本與三維重建的股前外側(cè)血管的圖形,使標(biāo)本照片與三維圖形有一個(gè)直觀的對(duì)比。由復(fù)合圖形可知,三維重建圖形所能表達(dá)的信息量要多于標(biāo)本照片,前者能同時(shí)顯示不同層面,不同方向的所有血管分支,而標(biāo)本照片只能顯示所解剖的單層面的信息,而對(duì)于被覆蓋的部份則無(wú)法顯示。但三維圖形的不足之處也是顯而易見(jiàn)的,如重建的血管明顯比實(shí)物更加粗大與粗糙,從三維軟件中采集的平面圖形,其立體感有所下降。而且有顯示誤差,不適合數(shù)據(jù)采集。剝制標(biāo)本上可清晰地觀察到血管系統(tǒng),可觀察任一支血管的來(lái)源、走行、分布與吻合等情況,可以進(jìn)行數(shù)據(jù)測(cè)量,但不能同時(shí)顯示多層結(jié)構(gòu)。 結(jié)論: 1、以旋股外側(cè)動(dòng)脈降支為蒂,利用肌支可以形成肌瓣,利用肌皮支可以形成皮瓣。根據(jù)創(chuàng)面的形態(tài)與位置,可以用不同部位的血管支的距離來(lái)調(diào)整肌瓣和肌皮瓣的葉間距離,使分葉肌皮瓣與所修復(fù)創(chuàng)面更加吻合。以旋股外側(cè)動(dòng)脈降支為蒂的分葉肌皮瓣是臨床修復(fù)復(fù)雜創(chuàng)面的一種極佳選擇。 2、以腓動(dòng)脈中、下部穿支或終末支與其它血管的吻合為蒂,可以設(shè)計(jì)切取逆行腓骨長(zhǎng)、短肌肌皮瓣,修復(fù)小腿下部及足背部缺損。 3、血管灌注結(jié)合三維重建的方法對(duì)于觀察人體血管的三維狀態(tài)、不同角度與不同層面的走行與分布具有相當(dāng)?shù)膬?yōu)勢(shì),但不能完全替代傳統(tǒng)的剝制標(biāo)本。 主要?jiǎng)?chuàng)新點(diǎn): 1、為以旋股外側(cè)動(dòng)脈降支為蒂的分葉肌皮瓣設(shè)計(jì)提供了詳實(shí)的解剖學(xué)基礎(chǔ),可指導(dǎo)臨床手術(shù),為臨床修復(fù)巨大軟組織缺損,感染性創(chuàng)面,或女性乳房再造等復(fù)雜創(chuàng)面設(shè)計(jì)提供了新的和理想的選擇。 2、提出和開(kāi)發(fā)設(shè)計(jì)了逆行腓骨肌皮瓣,并從解剖學(xué)角度詳細(xì)地論證了該肌皮瓣的可行性與實(shí)用性,為小腿中下部及足背軟組織缺損的修復(fù)提供了可靠并實(shí)用的組織瓣供區(qū)。 3、首次對(duì)三維重建結(jié)構(gòu)與實(shí)物標(biāo)本進(jìn)行比較,從血管解剖學(xué)角度研究了三維重建的血管與實(shí)物標(biāo)本上血管的差異,為后期血管的三維重建及三維血管研究奠定了堅(jiān)實(shí)的基礎(chǔ)。
[Abstract]:Research background and purpose:
With the development of industry and modernization, human skin and other tissue defects caused by traffic accidents and injuries are increasing. As the environmental pollution is aggravating, the tumor patients are increasing. After the tumor excision, tissue filling is needed to restore the shape and cover the wound. The higher the number of wounds, the different tissues and wounds to be repaired. This is a problem that clinicians and surgeons have been exploring for a long time.
In 1984, the anterolateral thigh flap was first reported, and the flap was first applied to the clinic. The anterolateral thigh flap has the advantages of clear anatomical marks, long vascular pedicle, large diameter, large area, less anatomical variation, easy cutting and concealment of the donor area. It is the ideal flap donor area of the femoral head. The flap is in the first place. The flap is in the first place. The flap is in the first place. The second report has been widely used in the short term, and the further basic research and clinical application are also in depth, and the relevant reports of anatomical and clinical applications are emerging, and the related surgical methods or improvements are also present.
In 2005, Liu Huiren reported the clinical application of the lobular myocutaneous flap pedicled with the descending branch of the lateral femoral circumflex artery. It was considered that the descending branch of the lateral circumflex artery was a vascular pedicle. The cutaneous branch formed a flap with the anterolateral thigh skin and subcutaneous tissue, and the muscle branches carried some of the lateral femoris to form the muscle flap, using different muscles according to the size and shape of the wound. The position and size of the muscle flap of the branches were adjusted to cut the lobular myocutaneous flap adapted to the wound. It was used in 8 cases to obtain satisfactory results. The design was novel and easy to operate. It had good clinical value and was worth popularizing, but its anatomical basis was rarely reported.
The soft tissue defect of 1/3 and foot and ankle in the lower leg with bone, plate or tendon exposure is a common problem in clinical. Although there are many treatment methods, each method has its own shortcomings. Especially, some methods are difficult to be applied in grass-roots hospitals because of the complexity of operation or high failure rate.
In 2003, Deng Guo three reported the repair of the soft tissue defect of the lower leg and the ankle with the fibula muscle flap of the fibula. He believed that the peroneal short muscle was not easy to damage the nutrient vessels of the fibula short muscle because of the peroneal artery supply to the peroneal muscle, so it could be used in many cases where the 1/3 was not used. At the same time, the operation is simple, the time is short, and the success rate is high.
However, the deficiency of the fibula muscle flap to repair the lower and lower leg trauma is also obvious. Because it does not take the skin and fascia, it only plays the role of filling the defect, but can not complete the skin cover of the wound at once. It is necessary to carry out the free transplantation of the medium thick skin slices on the surface of the muscle flap.
In 1989, the free fibula flap was first used to repair the defect of the mandible for the first time. After that, the free fibula (skin) flap was used to reconstruct and repair the mandible defect. The fibula bone flap, the fibula muscle flap and the myocutaneous flap can be used together, which can be used according to the characteristics and needs of the area. A composite tissue flap or chimeric tissue flap can be formed by living design and cutting.
After years of clinical application and anatomical basis, the blood supply basis and clinical application of the fibula flap are clear and clear. There are few related data for the characteristics of the blood supply of the peroneal long muscles and the peroneal short muscles, and the related distribution and anastomosis of the cutaneous arteries, especially the retrograde peroneal myocutaneous flap and the peroneal muscle skin. The source of the blood supply of the valve, whether it adapts to the repair of the lower and lower leg and the defect of the foot and back, and the problems that should be paid attention to during the operation are still necessary for further research.
With the in-depth study of human morphology and the application and development of computer technology in the field of medicine, it is possible to visualize the three-dimensional structure of human body. It has played an important role in the medical teaching and clinical practice in the visual model of human anatomy, and it has been played in the medical teaching and clinical practice. On the basis of the establishment of a virtual environment for surgical and preoperative formulation, it has an irreplaceable and inspiring application prospect in the teaching of surgery and simulation training. In recent years, more reports have been made on the anatomy of human anatomy related to three-dimensional virtual. Research on vessels in local area is a new method of vascular research which has developed and matured in recent years.
This method can be used in three-dimensional reconstruction of blood vessels by computer software, and then three dimensional display of blood vessels in the region from different angles and levels, and can be combined with bone, muscle and skin in the same area to show the blood vessels in the region. It provides an intuitive and practical anatomical basis for improvement.
However, whether the virtual structure can completely replace the entity, whether there is difference between the two, what are the advantages and limitations of the two, these problems still need further research and understanding.
The anatomical basis of the pedicled myocutaneous flap pedicled with the descending branch of the lateral circumflex artery was studied with 30 specimens, combined with the technique of giant microanatomy and three-dimensional reconstruction. (2) the blood supply, the area of the flap, the position of the rotation point and the notice of clinical attention were studied by the same method, and (3) the deficiency of the three-dimensional reconstruction was made. The proposed lower extremities vessels are compared with the physical structure to explore whether the virtual structure can completely replace the entity, whether there is a difference between the two, the advantages and limitations of the two.
Method:
(1) 20 sides of fresh lower extremities, arterial infusion of red latex, and anatomic observation of the starting, walking, branching, distribution of the descending branch of the lateral femoral circumflex artery in the thigh, especially the part of its trunk entering the lateral femoral muscle, and its branches, distribution and anastomosis in the lateral femoral muscle. The peroneal artery was dissected and observed in the calf at the peroneal muscle and fibula. The origin, movement, distribution and distribution of the short bone and its surface and subcutaneous tissue, especially the distribution and distribution of the perforating branches of the musculocutaneous flap.
(2) on the other 6 sides of fresh lower limb specimens, the femoral artery was perfused with gelatin and lead oxide suspension, and the CT scan was performed after condensation. The three dimensional software was used to reconstruct the lower extremities arteries and their branches. The position of the descending branch of the lateral femoral artery and the lateral femoral muscle, the anterolateral femoral skin, the femur and other structures were observed. The design of the pedicle musculocutaneous flap for the descending branch of the lateral femoral artery and the pedicled lobular flap was designed. The anatomical basis of the lateral part of the leg and its relationship with the surrounding structure were observed, and the anatomical basis for the design and clinical application of the retrograde fibula myocutaneous flap was provided.
(3) in addition to the 2 sides of the fresh human lower extremities, the developer was perfused from the arteries and veins respectively. After CT scanning, the three-dimensional software was used for segmentation and reconstruction. The specimens after the scanning were dissected to show their respective vascular systems. The three-dimensional graphics were compared with the specimen photographs to investigate whether the virtual structure could completely replace the entity. There are differences, advantages and limitations of both.
Result:
1,80.8%'s descending branch of the lateral femoral artery, with an average external diameter of 3.7mm, fell in the deep surface of the rectus femoris and descended along the anterolateral femoral muscle. At the beginning of the lateral femoral muscle, the lateral branch was disposed of within the lateral branch of the lateral branch, and the lateral branch of the lateral branch of the nutrient femoral muscle and the external muscular vessel were long 8.1cm. 6.6 branches of the musculus or myocutaneous branches of the 6.6 caliber 1.0mm were issued in the middle of the lateral femur muscle. There was an obvious anastomosis between the adjacent branches of the 18.6mm. branches between the adjacent branches of the lateral branch of the lateral branch of the lateral circumflex femoral artery and the ascending branch of the lateral superior knee artery in the lateral femoral muscle, and the descending knee joint and the formation of the knee joint artery network. In addition to 1 exceptions, there were 63 cutaneous branches and a external diameter of 0.8mm, which accounted for 23.8% of the muscular space perforator. In the 76.2%.26 side of the musculocutaneous perforator, there were 15 lateral limbs with 19 0.8mm high cutaneous arteries.
2, the external diameter of the peroneal artery was 3.7mm, and a number of muscle branches were issued along the way, supplying the soleus muscle, the flexor pollicis long flexor, the long fibula, the short muscle and the surface skin. The beginning of the peroneal artery to the first nourishing artery was 52.1mm, and the average diameter of the initial diameter 3.0mm. emitted a number of arcuate arteries in the middle of the fibula, and the coarseest 1 external diameters averaged 1.5mm, bypassing the fibula to the periosteum of the fibula. The surface, then down along the fibula, sends out 2-4 branches of the fibula short muscle along the way. The peroneal artery sends out 5.4 cutaneous branches, from the soleus muscle and the long fibular gap, and the blood supply to the lateral leg skin, the average outer diameter is 0.7mm, and the skin perforator often has 1-2 veins. The free length of the peroneal perforator is 3.5cm. the distal fibular segment in tibia. The interosseous membrane was worn out in the interosseous membrane, and the outer diameter was 1.2mm, divided into the ascending and descending branches. The descending branch was descended along the anterior margin of the fibula and the lateral malleolus and anastomosed with the anterior lateral malleolus to form the anterior arch of the lateral malleolus. The outer diameter of the superficial peroneal artery of the 1.3mm. fibula had a superficial peroneal artery from the anterior tibial artery and the anterior interosseous membrane was between the peroneal and anterior group of the calf muscle. The diameter of the peroneal short peroneal muscle, superficial peroneal nerve and the anterolateral skin of the calf. The superficial peroneal nerve has 5.4 branches on each side of the peroneal nerve, including the superficial peroneal artery, the ascending of the peroneal perforator, the descending branch and the cutaneous branch of the dorsum artery of the peroneal artery, 1.8mm.
3, the three-dimensional software can be used to separate and reconstruct the independent bone, blood vessel, skin, muscle, and the reconstructed images can be displayed separately, and can also be combined. It can be observed from different levels and different angles.
The reconstruction images show that the descending branch of the lateral femoral circumflex artery sends out a series of branches to the lateral femoral muscle, and some branches pass through the lateral femoris to the deep fascia and skin. The branches in the lateral femoris have obvious mutual anastomosis, and there is a clear interphase between the cutaneous arteries in the deep fascia. These results are the descending branches of the lateral femoral circumflex artery. The pedicle muscle flap provides a direct anatomical basis for the flap and even the musculocutaneous flap.
The reconstructed images showed that the perforator and the traffic branch of the peroneal artery were communicated with the anterior tibial artery and the posterior tibial artery, and the muscle branch of the peroneal brevis muscle was found, and the cutaneous perforator was in a wide and rich anastomosis with the peripheral blood vessels.
Three-dimensional reconstruction of the anterolateral femoral vascular graphics, using Photoshop software to combine with the specimen photos, and make certain adjustments, positioning and transparency, can be observed on the same picture of the specimen and three-dimensional reconstruction of the anterolateral thigh blood vessels, so that the specimen photos and three-dimensional graphics have a visual comparison. The amount of information that the 3D reconstruction can express is more than the specimen photograph. The former can simultaneously display all vascular branches of different layers and different directions, while the specimen photos can only show the dissected information of the single plane, but can not be displayed for the covered parts. However, the defects of the 3D graphics are also obvious, such as the reconstruction. The blood vessels are obviously larger and rough than the objects, and the plane graphics collected from the three-dimensional software have decreased. Moreover, there is a display error and is not suitable for data acquisition. The vascular system can be clearly observed on the specimen, and the source, line, distribution and anastomosis of any vessel can be observed, but the data can be measured, but it can not be measured. The multi-layer structure can be displayed at the same time.
Conclusion:
1, pedicled with the descending branch of the lateral femoral circumflex artery, the muscle flap can be used to form the muscle flap and the skin flap can be used to form the flap. According to the shape and position of the wound, the distance of the vascular branches of different parts can be used to adjust the distance between the myocutaneous flap and the musculocutaneous flap, so that the lobular myocutaneous flap is more anastomosed with the repaired wound. The pedicle of the lateral circumflex artery is the pedicle. The lobular myocutaneous flap is a face to face.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2009
【分類(lèi)號(hào)】:R658.3;R322
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳勝華;徐達(dá)傳;彭田紅;譚建國(guó);何慧;周小兵;;三維重建技術(shù)在組織瓣基礎(chǔ)研究中的應(yīng)用[J];解剖科學(xué)進(jìn)展;2010年01期
2 亞力坤·依明;夏迎洪;;夾層動(dòng)脈瘤的多層螺旋CT掃描方法及三維重建技術(shù)[J];吉林醫(yī)學(xué);2009年09期
3 季道秀;;單排螺旋CT三維重建的臨床應(yīng)用價(jià)值[J];現(xiàn)代醫(yī)藥衛(wèi)生;2009年19期
4 鄒海勇;;多排螺旋CT三維重建技術(shù)在肝癌的應(yīng)用價(jià)值[J];中外醫(yī)療;2009年33期
5 陶文強(qiáng);黃文華;徐達(dá)傳;;基于CT技術(shù)胰腺及其周?chē)苋S重建研究進(jìn)展[J];中國(guó)臨床解剖學(xué)雜志;2009年04期
6 李玉林;于昭;程亞寶;;多層螺旋CT血管造影及三維重建技術(shù)在腸系膜上靜脈栓塞診斷中的臨床價(jià)值[J];醫(yī)學(xué)影像學(xué)雜志;2011年03期
7 高建華,彭勇,賀洪德;螺旋CT的多平面和三維重建技術(shù)在胸部的應(yīng)用[J];實(shí)用放射學(xué)雜志;2000年04期
8 楊健;王涌天;唐宋元;周壽軍;劉越;;DSA血管三維重建技術(shù)分析與展望[J];中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào);2005年06期
9 劉罡;;MSCT三維重建技術(shù)在肺隔離癥診斷中的應(yīng)用[J];中國(guó)現(xiàn)代醫(yī)生;2010年03期
10 李玉林;于昭;程鳳燕;程亞寶;;多層螺旋CT血管成像與三維重建在腦動(dòng)脈瘤診斷中的應(yīng)用價(jià)值[J];臨床和實(shí)驗(yàn)醫(yī)學(xué)雜志;2011年02期
相關(guān)會(huì)議論文 前10條
1 顧俊瑋;楊燕敏;張偉華;;旋轉(zhuǎn)DSA三維重建技術(shù)在顱內(nèi)動(dòng)脈狹窄的臨床價(jià)值[A];2009中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十七次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2009年
2 王穎穎;張偉成;;數(shù)字減影血管造影的三維重建技術(shù)[A];第三屆全國(guó)數(shù)字成像技術(shù)及相關(guān)材料發(fā)展與應(yīng)用學(xué)術(shù)研討會(huì)論文摘要集[C];2004年
3 王靖宇;曹曉明;程偉;王東文;;CT血管造影及三位重建診斷下腔靜脈后輸尿管的臨床價(jià)值[A];第十六屆全國(guó)泌尿外科學(xué)術(shù)會(huì)議論文集[C];2009年
4 吳振剛;;16層螺旋CT三維重建技術(shù)在頜面部骨折診斷中的應(yīng)用價(jià)值[A];2010中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十八次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2010年
5 毛蕓;;64排螺旋CT三維重建技術(shù)在絞窄性腸梗阻中的診斷價(jià)值[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(下冊(cè))[C];2006年
6 王春龍;張頌;;胸骨三維重建誤診為骨折一例[A];中國(guó)法醫(yī)學(xué)會(huì)全國(guó)第十次法醫(yī)臨床學(xué)學(xué)術(shù)研討會(huì)論文集[C];2007年
7 王滔;羅s,
本文編號(hào):2079433
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/2079433.html