顳下鎖孔入路:顯微解剖與定量分析
發(fā)布時間:2018-04-24 13:53
本文選題:解剖研究 + 顳下鎖孔入路; 參考:《復旦大學》2008年博士論文
【摘要】: 第一部分:前顳下鎖孔入路開放顱神經(jīng)池至上巖斜區(qū):顯微解剖與對比分析 目的:定量對比分析在前顳下鎖孔入路中開放顱神經(jīng)池前后至上巖斜區(qū)的顯露面積和操作角度。 方法:采用神經(jīng)導航工具,在20側(cè)尸頭標本上,定量測量并對比了開放顱神經(jīng)池前后鞍背、斜坡顯露面積、BA(基底動脈)周圍腦干腹外側(cè)顯露面積、后巖床襞顯露長度、BA干顯露長度以及至BA頂端的操作角度。并測量了動眼神經(jīng)池,滑車神經(jīng)池長度,動眼神經(jīng)孔與滑車神經(jīng)孔距離,三叉神經(jīng)顯露長度和開放顱神經(jīng)池后至斜坡下、內(nèi)方最遠可及點的操作角度。 結(jié)果:開放顱神經(jīng)池后鞍背、斜坡顯露面積(136.7±19.8mm~2)、BA周圍腦干腹外側(cè)顯露面積(222.8±25.8mm~2)、后巖床襞顯露長度(11.5±0.6mm)、BA干顯露長度(10.3±2.0mm)以及至BA頂端的垂直操作角度(13.7±1.7°)均有顯著增加(P<0.05)。至BA頂端的水平操作角度(24.5±1.1°,24.7±0.8°)前后無顯著增加(P>0.05)。動眼神經(jīng)池,滑車神經(jīng)池長度,動眼神經(jīng)孔與滑車神經(jīng)孔距離,三叉神經(jīng)顯露長度和開放顱神經(jīng)池后至斜坡下、內(nèi)方最遠可及點的操作角度分別為6.7±1.3mm,10.7±2.4mm,9.6±2.3mm,15.8±1.4mm和13.0±1.5°。 結(jié)論:開放顱神經(jīng)池后能夠增加上巖斜區(qū)的顯露面積和操作角度。 第二部分:后顳下鎖孔合并經(jīng)脈絡裂入路至環(huán)池周區(qū):顯微解剖與定量測量 目的: 研究后顳下鎖孔合并經(jīng)脈絡裂入路至環(huán)池周區(qū)的顯微解剖,并定量測量了兩種入路分別對環(huán)池周區(qū)上部和下部的顯露范圍。 方法: 在16側(cè)尸頭標本上,根據(jù)大體解剖確定了后顳下鎖孔合并經(jīng)脈絡裂入路至環(huán)池周區(qū)的合適骨窗位置,統(tǒng)計了Labbe's靜脈與骨窗的關系。并采用神經(jīng)導航工具,定量測量了在后顳下鎖孔經(jīng)顳下入路中三叉神經(jīng)根顯露長度,P2a自后交通動脈匯入點至海馬旁回下緣顯露長度和腦干外側(cè)面的顯露范圍。定量測定了后顳下鎖孔經(jīng)脈絡裂入路中顳下溝切口距天幕的距離,下脈絡點距顳角尖距離,以及牽拉和未牽拉海馬體時中腦上部的顯露長度。還統(tǒng)計了經(jīng)脈絡裂入路時P2p段顯露的比例。 結(jié)果: 顴弓上緣、耳廓后緣以及乳突上嵴、顳鱗縫、頂乳縫交點分別是確定合適骨窗位置較好的體表和骨性解剖標志點。在此骨窗中Labbe's靜脈68.75%匯入點在骨窗后緣后方,18.75%恰好平骨窗后緣,12.5%匯入點在骨窗范圍內(nèi)。 在后顳下鎖孔經(jīng)顳下入路中三叉神經(jīng)根顯露長度為10.02±0.76mm,P2a顯露長度為16.32±2.02mm,A點(中腦腦橋溝和中腦外側(cè)溝交點)上方沿中腦外側(cè)溝沿線中腦顯露長度為7.5±0.19mm,A點下方沿中腦外側(cè)溝假想連線腦橋顯露長度為11.04±0.27mm,A點前方沿中腦腦橋溝沿線腦干顯露長度為15.72±0.52mm,A點后方沿中腦腦橋溝沿線腦干顯露長度為10.16±0.38mm。 在后顳下鎖孔經(jīng)脈絡裂入路中顳下溝切口距天幕為14.6±0.43mm,下脈絡點距顳角尖距離為8.62±0.23mm,打開脈絡裂顳部未向尾側(cè)牽拉海馬時穹窿傘上緣至外側(cè)膝狀體垂直距離為5.28±0.46mm,未向尾側(cè)牽拉海馬時穹窿傘上緣至P2p的垂直距離為3.8±2.1mm,向尾側(cè)輕拉海馬后中腦上部、后丘腦垂直顯露長度(自外側(cè)膝狀體沿中腦外側(cè)溝方向至穹窿傘上緣)為11.18±0.57mm,向尾側(cè)輕拉海馬后P2p及P3顯露長度為12.14±1.88mm。在脈絡裂入路中93.75%的標本可以較好顯露大腦后動脈P2p段。 結(jié)論:一些體表和骨性標志是確定后顳下鎖孔入路合并經(jīng)脈絡裂入路合適骨窗位置的關鍵。后顳下鎖孔經(jīng)顳下入路結(jié)合天幕切開和牽拉小腦方葉適合顯露環(huán)池下部和小腦腦橋池上部及其內(nèi)部結(jié)構(gòu);后顳下鎖孔經(jīng)顳下溝、經(jīng)脈絡裂入路適合顯露環(huán)池上部及其內(nèi)部結(jié)構(gòu),尤其適合顯露大多數(shù)高位P2p段。MRI冠狀位上,海馬旁回弧形內(nèi)緣的中點可以作為兩種入路選擇的解剖標志點。
[Abstract]:Part I: anterior craniofacial keyhole approach to cranial cistern to superior petroclival region: microanatomy and comparative analysis
Objective: to quantitatively compare and analyze the exposure area and operation angle of anterior cranial cistern in anterior and inferior petroclival region.
Methods: on 20 sides of cadaver head specimens, nerve navigation tools were used to measure and compare the exposed area of the saddle back, the exposed area of the ramp, the exposure area of the ventral lateral brain stem around the BA (basilar artery), the length of the fold of the posterior rock bed fold, the length of the BA dry exposure and the operation angle to the top of the BA, and the measurement of the oculomotor nerve pool and the trochlear nerve pool. Length, distance between oculomotor nerve orifice and trochlear nerve, length of exposure of trigeminal nerve and opening of cranial nerve pool to the bottom of slope.
Results: the exposed area of the posterior cranial saddle was (136.7 + 19.8mm~2), the exposed area of the ventral lateral brain (222.8 + 25.8mm~2), the exposure length of the posterior rock bed (11.5 + 0.6mm), the BA dry exposure length (10.3 + 2.0mm) and the vertical operating angle (13.7 + 1.7 degrees) to the top of BA were significantly increased (P < 0.05). To the horizontal operation of BA top. The angle (24.5 + 1.1 degrees, 24.7 + 0.8 degrees) had no significant increase (P > 0.05). The oculomotor nerve pool, the length of the trochlear nerve pool, the distance between the oculomotor hole and the trochlear nerve hole, the length of the trigeminal nerve exposure and the opening of the cranial nerve pool to the slope, the operating angles of the farthest possible points were 6.7 +, 10.7 + 2.4mm, 9.6 + 2.3mm, 15.8 + 1.4mm and 13, respectively. It is 1.5 degrees.
Conclusion: the opening of cranial nerve pool can increase the exposed area and operation angle of the superior petroclival area.
The second part: posterior infratemporal keyhole combined with meridian collateral fissure approach to the circumference of the circumference of the circumference: microanatomy and quantitative measurement.
Objective:
The microanatomy of the posterior temporal keyhole combined with the meridian fissure approach to the circumcircumference area was studied, and the exposure range of the two approaches to the upper and lower part of the circumference of the ring basin was measured.
Method:
On the 16 sides of the cadaver head specimens, the appropriate bone window position of the posterior temporal keyhole combined with the meridian fissure approach to the circumference pool area was determined according to the gross anatomy. The relationship between the Labbe's vein and the bone window was statistically analyzed. And the nerve navigation tool was used to measure the length of the trigeminal nerve root in the posterior temporal keyhole through the infratemporal approach, and P2a from the posterior communicating artery. The distance of exposure to the lower margin of the parahippocampal margin and the outward appearance of the brain stem was measured. The distance of the infratemporal incision from the tentorium in the infratemporal keyhole approach, the distance from the inferior temporal point to the temporomandibular point, and the exposure length of the middle brain at the time of the traction and the non traction hippocampus were quantified. The P2p segment revealed by the choroidal approach. Proportion.
Result:
The upper margin of the zygomatic arch, the posterior edge of the auricle and the ridge of the mastoid, the temporomandibular seams, and the intersection of the top milk seams are the better body surface and the bone sign points to determine the proper position of the bone window. In this window, the 68.75% remittance point of the Labbe's vein is behind the posterior margin of the bone window, 18.75% happens to the posterior margin of the flat window, and the 12.5% is within the range of the bone window.
The exposure length of the trigeminal nerve root in the infratemporal keyhole approach is 10.02 + 0.76mm, and the P2a exposure length is 16.32 + 2.02mm. The exposure length of the middle brain along the lateral sulcus of the mesencephalon (mesencephalic pons gutter and the lateral sulcus of the mesencephalon) is 7.5 + 0.19mm, and the exposure length of the hypothetical bridge in the lateral sulcus of the mesencephalon is 11.04 + 0.27mm, A points below the A point. The length of the brainstem along the pons in the midbrain was 15.72 + 0.52mm, and the length of the brainstem along the pons in the midbrain was 10.16 + 0.38mm. at the A point.
The infratemporal incision in the posterior temporal keyhole approach was 14.6 + 0.43mm, and the distance from the inferior choroid point to the temporomandibular point was 8.62 + 0.23mm. The vertical distance between the upper and the lateral geniculate bodies of the choroid fissure was 5.28 + 0.46mm, and the vertical distance from the upper margin of the fornix to the P2p was not drawn to the caudal side of the hippocampus. For 3.8 + 2.1mm, the upper middle brain of the hippocampus was pulled back to the tail side. The vertical exposure of the posterior thalamus (from the lateral geniculate body along the lateral trench to the upper fornix parachute) was 11.18 + 0.57mm. The P2p and P3 exposure to the tail side of the hippocampus and the 12.14 + 1.88mm. in the choroidal fissure approach were better exposed to the P2p segment of the posterior cerebral artery.
Conclusion: some body surface and bone markers are the key to determine the position of the appropriate bone window for the posterior temporal keyhole approach combined with the meridian fissure approach. The posterior temporal keyhole through the infratemporal approach combined with the tentorial incision and the traction of the cerebellar square leaves is suitable for revealing the upper part of the lower part of the ring pool and the upper cerebellopontine pool and its internal structure; the posterior temporal keyhole through the infratemporal groove through the choroid fissure approach It is suitable for revealing the upper and internal structure of the ring pool, and is especially suitable for exposing most of the high P2p segment.MRI coronal sites, and the midpoint of the parahippocampal gyrus inner edge can be used as the two anatomical marker.
【學位授予單位】:復旦大學
【學位級別】:博士
【學位授予年份】:2008
【分類號】:R322
【參考文獻】
相關期刊論文 前3條
1 王先祥,馮春國,李長元,楊永富,韓卉,萬經(jīng)海;顳下鎖孔入路的顯微解剖與臨床應用[J];中國微侵襲神經(jīng)外科雜志;2004年09期
2 蘭青,康德智,錢志遠,陳堅,陸朝暉,劉士海,黃強;前顳下“鎖孔”入路顯微手術的臨床應用[J];中國微侵襲神經(jīng)外科雜志;2004年09期
3 董家軍;蘭青;;后部顳下鎖孔入路的顯微解剖學研究及可行性探討[J];中國微侵襲神經(jīng)外科雜志;2006年01期
,本文編號:1796916
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1796916.html
最近更新
教材專著