缺氧條件下腦微血管內(nèi)皮細(xì)胞與間充質(zhì)干細(xì)胞的相互影響
本文選題:間充質(zhì)干細(xì)胞 + 腦微血管內(nèi)皮細(xì)胞; 參考:《第三軍醫(yī)大學(xué)》2008年碩士論文
【摘要】: 研究背景: 骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSC)是來源于骨髓的成體干細(xì)胞,具有多潛能分化性,已證明MSC修復(fù)和分化為多種組織的能力,尤其在修復(fù)和重建血管方面成為缺血性疾病治療研究的熱點(diǎn)。腦微血管內(nèi)皮細(xì)胞(brain microvascular endothelial cells, BMEC)是構(gòu)成血腦屏障的最主要組成部分,具有細(xì)胞間緊密連接、極少的胞飲囊泡和維持神經(jīng)組織離子和代謝穩(wěn)定的特殊跨膜轉(zhuǎn)運(yùn)系統(tǒng)等獨(dú)有生理特點(diǎn)。在缺血性腦血管疾病中,BMEC的損傷是導(dǎo)致血腦屏障開放、腦水腫發(fā)生,從而加重神經(jīng)元細(xì)胞損傷的重要因素,同時(shí)缺血半暗區(qū)腦微血管的修復(fù)與新生也是挽救缺血受損神經(jīng)元的關(guān)鍵。當(dāng)前,在干細(xì)胞治療缺血性腦血管病的研究方面,多數(shù)研究聚焦于干細(xì)胞修復(fù)受損的神經(jīng)組織,然而在干細(xì)胞對(duì)腦缺血部位受損的血腦屏障和微血管內(nèi)皮細(xì)胞影響的研究并未深入。本實(shí)驗(yàn)以缺氧條件下培養(yǎng)BMEC模擬缺血性腦血管疾病中血腦屏障和腦微血管所處的病理生理環(huán)境,觀察BMEC對(duì)共培養(yǎng)的MSC分化的影響,以及MSC以旁分泌方式對(duì)BMEC增殖、遷移和血腦屏障模型通透性的影響,為MSC應(yīng)用于缺血性腦血管疾病的治療提供基礎(chǔ)實(shí)驗(yàn)依據(jù)。 研究目的: 1.分離、培養(yǎng)及鑒定大鼠BMEC和人骨髓MSC,建立缺氧條件下BMEC與MSC直接與間接共培養(yǎng)的模型,觀察缺氧條件下BMEC對(duì)直接與間接共培養(yǎng)的MSC分化的影響。 2.測定MSC與BMEC條件培養(yǎng)液中血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和基質(zhì)金屬蛋白酶-9(matrix metalloproteinases-9,MMP-9)含量,觀察缺氧條件下MSC以旁分泌方式對(duì)BMEC增殖、遷移及其單層通透性的影響。 研究方法: 1.分離、培養(yǎng)及鑒定大鼠BMEC和人骨髓MSC:采用兩次酶消化法(0.1%Ⅱ型膠原酶,0.1%膠原酶/分散酶)和密度梯度離心法得到純化的腦微血管片段,加入含10ng/ml bFGF、20%胎牛血清和100μg/ml肝素鈉的DMEM高糖完全培養(yǎng)液,接種于涂布Ⅳ型膠原和纖連蛋白的塑料培養(yǎng)瓶,免疫熒光細(xì)胞化學(xué)法鑒定BMEC的vWF表達(dá);用密度梯度離心法分離人骨髓MSC,采用流式細(xì)胞術(shù)鑒定MSC的CD29、CD34、CD44、CD105和Flk-1表達(dá)。建立缺氧條件下BMEC與MSC直接與間接共培養(yǎng)的模型:缺氧實(shí)驗(yàn)在37℃、93%N2、5%CO_2、2%O_2的缺氧培養(yǎng)箱內(nèi)進(jìn)行;間接共培養(yǎng)使用孔徑0.4μm的Millicell Culture Plate Inserts,BMEC以10%胎牛血清的DMEM低糖(DMEM-10)接種于上層(5×10~3/well),將MSC以DMEM-10接種于下層24孔板內(nèi)(5×10~3/well);直接共培養(yǎng)將兩種細(xì)胞以5000:5000cells/ml的比率混合于DMEM-10后接種于培養(yǎng)瓶或蓋玻片上。觀察缺氧條件下BMEC對(duì)共培養(yǎng)的MSC分化的影響:分別將直接和間接共培養(yǎng)的細(xì)胞在正常和缺氧條件下培養(yǎng)5天,采用流式細(xì)胞術(shù)(定量檢測Flk-1)和免疫熒光細(xì)胞化學(xué)法(定性檢測Flk-1和vWF)對(duì)MSC的分化程度進(jìn)行分析。2.①測定MSC與BMEC條件培養(yǎng)液中VEGF和MMP-9含量:收集正常和缺氧條件下兩種細(xì)胞的條件培養(yǎng)基得到正常的腦微血管內(nèi)皮細(xì)胞條件培養(yǎng)基(BMEC~(CM N))、間充質(zhì)干細(xì)胞條件培養(yǎng)基(MSC~(CM N)),以及缺氧條件下腦微血管內(nèi)皮細(xì)胞條件培養(yǎng)基(BMEC~(CM H))、間充質(zhì)干細(xì)胞條件培養(yǎng)基(MSC~(CM H)),用ELISA檢測各條件培養(yǎng)基中VEGF和MMP-9的含量;②觀察各條件培養(yǎng)基對(duì)BMEC增殖和遷移的影響:使用六種不同培養(yǎng)基(DMEM-10、MSC~(CM N)、MSC~(CM H)、煮沸的MSC~(CM H)培養(yǎng)基、添加抗VEGF抗體和MMP -9抑制劑I的MSC~(CM H)對(duì)BMEC進(jìn)行培養(yǎng),采用Cell Counting Kit-8方法檢測各條件培養(yǎng)基對(duì)BMEC增殖的影響,采用Transwell培養(yǎng)體系檢測各條件培養(yǎng)基對(duì)BMEC遷移的影響;③觀察各條件培養(yǎng)基對(duì)BMEC單層通透性的影響:使用MilliCell-ERS Voltohmmeter測量不同條件培養(yǎng)基(DMEM-10、MSC~(CM N)、MSC~(CM H)、含VEGF抗體的MSC~(CM H)和含MMP-9抑制劑I的MSC~(CM H))對(duì)BMEC單層通透性的影響。 結(jié)果: 1.流式細(xì)胞儀檢測結(jié)果表明MSC呈CD29、CD44、CD105陽性表達(dá),CD34和Flk-1陰性表達(dá);免疫熒光細(xì)胞化學(xué)法檢測BMEC呈vWF陽性表達(dá)。常氧和缺氧條件下的間接和直接共培養(yǎng)的細(xì)胞均能良好生長。常氧條件下間接共培養(yǎng)MSC的Flk-1和vWF蛋白均為陰性表達(dá)。缺氧條件下間接共培養(yǎng)的(7.58±0.58)% (n=6,P=0.034) MSC開始表達(dá)Flk-1蛋白,激光共聚焦顯微鏡也顯示少量細(xì)胞開始出現(xiàn)紅色熒光,但未見綠色熒光的vWF蛋白表達(dá)。正常和缺氧條件下直接共培養(yǎng)5 d時(shí),開始表達(dá)Flk-1蛋白的MSC分別占共培養(yǎng)混合細(xì)胞數(shù)的(13.76±1.67)% (n=6,P0.001)和(23.64±2.50)% (n=6,P0.001),兩者相比有顯著性差異(n=6,P0.001);激光共聚焦也顯示部分MSC開始表達(dá)Flk-1,而在常氧共培養(yǎng)細(xì)胞中未發(fā)現(xiàn)Flk-1陽性的細(xì)胞同時(shí)表達(dá)vWF,值得關(guān)注的是,缺氧直接共培養(yǎng)的混合細(xì)胞中,部分Flk-1陽性細(xì)胞開始同時(shí)表達(dá)vWF的綠色熒光。 2.①ELISA檢測條件培養(yǎng)基中VEGF、MMP-9的含量:缺氧導(dǎo)致BMEC和MSC條件培養(yǎng)基中VEGF含量均明顯增高;MSC~(CM H)中VEGF含量明顯高于BMEC~(CM H);BMEC~(~(CM N))中未檢測到MMP-9,MSC~(CM H)中MMP-9含量明顯高于MSC~(CM N)和BMECCM H。②條件培養(yǎng)基對(duì)BMEC增殖和遷移的影響:與DMEM-10相比,MSC~(CM N)明顯增強(qiáng)了BMEC的增殖,而MSC~(CM H)對(duì)BMEC的增殖作用又明顯強(qiáng)于MSCCM N(0.947±0.103與0.532±0.028,P0.001,n=6);MSC~(CM H)促增殖作用因煮沸而完全喪失,同時(shí)VEGF的阻斷抗體可明顯抑制MSC~(CM H)對(duì)BMEC的增殖作用(0.947±0.103與0.419±0.034,P0.001,n=6),而MMP-9抑制劑對(duì)BMEC的增殖影響不明顯(0.947±0.103與0. 902±0.065,P=0.963,n=6)。與DMEM-10對(duì)照相比,MSC~(CM N)明顯增多了BMEC遷移細(xì)胞的數(shù)量,而MSC~(CM H)對(duì)BMEC的遷移作用又明顯強(qiáng)于MSC~(CM N)(238±27與154±24,P0.01,n=6);VEGF的阻斷抗體可明顯抑制MSC~(CM H)對(duì)BMEC的遷移作用(238±27與150±20,P0.001,n=6),而MMP-9抑制劑對(duì)BMEC的遷移的抑制則更為明顯(238±27與106±18,P0.001,n=6);與對(duì)增殖的影響類似,MSC~(CM H)促遷移作用經(jīng)煮沸處理而完全喪失。③檢測24h內(nèi)不同條件培養(yǎng)基對(duì)內(nèi)皮單層通透性的影響:常氧條件下DMEM-10培養(yǎng)的BMEC電阻值在24 h內(nèi)保持在較穩(wěn)定范圍內(nèi),缺氧狀態(tài)DMEM-10培養(yǎng)BMEC的電阻值在缺氧6~18 h內(nèi)出現(xiàn)明顯下降,約在18 h達(dá)到最低為處理前的(77.2±1.8)%;缺氧狀態(tài)MSC~(CM H)培養(yǎng)的BMEC的電阻值在2 h內(nèi)出現(xiàn)急劇增大,約在2 h達(dá)到最低,為處理前的(50.5±2.6)%,在隨后的2~24 h電阻值略有回升但仍處于較低水平;抗VEGF抗體和MMP-9抑制劑I使MSC~(CM H)培養(yǎng)的BMEC電阻值下降明顯趨緩,最低電阻值分別為處理前的(60.3±3.6)%和(76.0±2.4)%。 結(jié)論: 1.常氧條件下BMEC僅通過旁分泌細(xì)胞因子不足以誘導(dǎo)MSC分化,BMEC能夠通過細(xì)胞直接接觸誘導(dǎo)共培養(yǎng)的MSC向內(nèi)皮分化,缺氧在誘導(dǎo)MSC向內(nèi)皮分化的過程中發(fā)揮重要作用,缺氧條件下,直接共培養(yǎng)的BMEC能誘導(dǎo)更多的MSC更徹底地向內(nèi)皮分化。 2.①M(fèi)SC條件培養(yǎng)基中MMP-9和VEGF的含量均明顯高于BMEC條件培養(yǎng)基,缺氧可介導(dǎo)BMEC和MSC條件培養(yǎng)基中MMP-9和VEGF的含量明顯升高。②MSC可通過旁分泌方式促進(jìn)內(nèi)皮細(xì)胞的增殖和遷移,MMP-9在MSC以旁分泌方式促進(jìn)BMEC遷移過程中發(fā)揮了重要作用,而VEGF則同時(shí)在促進(jìn)BMEC增殖和遷移過程中發(fā)揮重要作用。③MSC可通過旁分泌方式導(dǎo)致BMEC單層通透性的急劇增大,缺氧狀態(tài)下MSC所分泌的大量MMP-9和VEGF是其導(dǎo)致BMEC單層通透性的急劇增大的原因,這是MSC應(yīng)用于缺血性腦血管疾病的治療中值得慎重考慮的問題。
[Abstract]:Research background:
Bone marrow mesenchymal stem cells (mesenchymal stem cells (MSC)) are adult stem cells derived from bone marrow and have multiple potential differentiation. It has proved the ability of MSC to repair and differentiate into a variety of tissues, especially in the repair and reconstruction of blood vessels as a hot point for the treatment of ischemic disease. Brain microvascular endothelial cells (brain microvascular endothel). Ial cells, BMEC) is the most important component of the blood brain barrier, which has the unique physiological characteristics such as close intercellular connection, very few vesicles, and special transmembrane transport system to maintain the ion and metabolic stability of the nerve tissue. In ischemic cerebrovascular disease, the damage of BMEC is caused by the opening of the blood brain barrier and the occurrence of brain edema. The key factors for cell injury in heavy neurons, and the repair and regeneration of the cerebral microvessels in the ischemic penumbra are also the key to save the ischemic neurons. Most studies focus on the repair of damaged nerve tissue in stem cells in the stem cell treatment of ischemic cerebrovascular disease. However, it is damaged by stem cells in the cerebral ischemic areas. The effects of blood brain barrier and microvascular endothelial cells were not deeply studied. In this experiment, the pathological and physiological environment of blood brain barrier and cerebral microvascular in ischemic cerebrovascular disease was simulated under hypoxia conditions, and the effect of BMEC on the differentiation of co cultured MSC, and the proliferation, migration and blood brain barrier model of BMEC by MSC by parathellate secreting methods were observed. The effect of type permeability provides a basic experimental basis for the application of MSC in the treatment of ischemic cerebrovascular diseases.
The purpose of the study:
1. isolation, culture and identification of rat BMEC and human bone marrow MSC, and establish a direct and indirect co culture model of BMEC and MSC under the condition of hypoxia, and observe the effect of BMEC on the direct and indirect co culture of MSC under the condition of hypoxia.
2. the contents of vascular endothelial growth factor (vascular endothelial growth factor, VEGF) and matrix metalloproteinase -9 (matrix metalloproteinases-9, MMP-9) in MSC and BMEC conditioned medium were measured, and the effects of paracrine on proliferation, migration and monolayer permeability under hypoxia were observed.
Research methods:
1. isolation, culture and identification of rat BMEC and human bone marrow MSC: using two enzyme digestion (0.1% type II collagenase, 0.1% collagenase / dispersing enzyme) and density gradient centrifugation to obtain the purified cerebral microvascular fragments, adding DMEM high sugar complete culture solution containing 10ng/ml bFGF, 20% fetal bovine serum and 100 g/ml heparin sodium, inoculated with type IV collagen and fiber. The vWF expression of BMEC was identified by immunofluorescence cytochemical method, and human bone marrow MSC was separated by density gradient centrifugation. The expression of CD29, CD34, CD44, CD105 and Flk-1 in MSC was identified by flow cytometry. The model of BMEC and MSC directly and indirectly cultured under the condition of hypoxia was established: the hypoxia experiment was at 37, and 93%N2,5%CO_2,2%O_2 was missing. In the oxygen incubator, Millicell Culture Plate Inserts with 0.4 m pore diameter was indirectly co cultured, BMEC was inoculated on the upper layer (5 x 10~3/well) with the DMEM low sugar (DMEM-10) of the 10% fetal bovine serum, and MSC was inoculated in the lower layer (5 * 10~3/well) in the lower layer (5 x 10~3/well), and the two kinds of cells were mixed at the ratio after mixing directly. The effects of BMEC on the differentiation of co cultured MSC were observed under the condition of hypoxia: direct and indirect co cultured cells were cultured under normal and anoxic conditions for 5 days respectively. Flow cytometry (quantitative detection of Flk-1) and immunofluorescent cytochemistry (qualitative detection of Flk-1 and vWF) were used to differentiate the degree of differentiation of MSC. Analysis of the content of VEGF and MMP-9 in the conditioned medium of MSC and BMEC: to collect the conditioned medium of normal cerebral microvascular endothelial cells (BMEC~ (CM N)), the conditioned medium of mesenchymal stem cells (MSC~ (CM N)) and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium (BM) (BM) under the condition of hypoxia (BM), and the conditioned medium (BM) (BM) in the condition of hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the condition medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the condition medium of the cerebral microvascular endothelial cells under the condition of hypoxia (BM) (BM),.2. EC~ (CM H)), the conditioned medium of mesenchymal stem cells (MSC~ (CM H)), the content of VEGF and MMP-9 in the conditioned medium was detected by ELISA. (2) the effects of the culture medium on the proliferation and migration of BMEC were observed. Six different medium (DMEM-10, MSC~), boiling water culture medium were used. The MSC~ (CM H) was used to culture the BMEC, and the Cell Counting Kit-8 method was used to detect the effect of the culture medium on the proliferation of BMEC, and the effect of the culture medium on the BMEC migration was detected by the Transwell culture system. Thirdly, the influence of the medium on the permeability of BMEC monolayer was observed. The effects of DMEM-10 (MSC~, CM N), MSC~ (CM H), MSC~ (CM H) containing VEGF antibody and the inhibitor of the inhibitor containing the inhibitor of VEGF on the permeability of monolayer were studied.
Result:
The results of 1. flow cytometry showed that MSC was CD29, CD44, CD105 positive, CD34 and Flk-1 negative expression, and immunofluorescent cytochemical method was used to detect the positive expression of vWF in BMEC. The indirect and direct co cultured cells under the condition of normoxic and hypoxia could grow well. The Flk-1 and vWF protein of CO cultured MSC under normal oxygen condition were all negative tables. The indirect co culture (7.58 + 0.58)% (n=6, P=0.034) MSC began to express Flk-1 protein in the hypoxic condition. The laser confocal microscope also showed that a small number of cells began to appear red fluorescence, but no green fluorescent vWF protein was expressed. When the normal and hypoxia conditions were directly co cultured 5 D, the MSC that began to express the Flk-1 protein accounted for the co culture mixture respectively. The cell number (13.76 + 1.67)% (n=6, P0.001) and (23.64 + 2.50)% (n=6, P0.001) were significantly different (n=6, P0.001). Laser confocal microscopy also showed that some MSC began to express Flk-1, while no Flk-1 positive cells were found to express vWF in normal oxygen co culture cells. It is worth paying attention to the direct co culture of mixed cells in hypoxia. Some Flk-1 positive cells began to express vWF green fluorescence simultaneously.
2. ELISA detected the content of VEGF, MMP-9 in the conditioned medium: the content of VEGF in the medium of BMEC and MSC was significantly higher than that in the condition medium of BMEC and MSC; the VEGF content in MSC~ (CM H) was obviously higher than BMEC~ (CM). Effect of migration: compared with DMEM-10, MSC~ (CM N) significantly enhanced the proliferation of BMEC, while MSC~ (CM H) significantly increased the proliferation of BMEC than MSCCM N (0.947 + 0.103 and 0.532 + 0.028, P0.001,). 103 and 0.419 + 0.034, P0.001, n=6), and the effect of MMP-9 inhibitors on the proliferation of BMEC was not obvious (0.947 + 0.103 and 0.902 + 0.065, P=0.963, n=6). Compared with DMEM-10, MSC~ (CM N) significantly increased the number of BMEC migration cells, and the migration of MSC~ (238 + 27 and 154 + 0.947); The antibody could obviously inhibit the migration of MSC~ (CM H) to BMEC (238 + 27 and 150 + 20, P0.001, n=6), while the inhibition of MMP-9 inhibitor to BMEC migration was more obvious (238 + 27 and 106 + 18, P0.001, n=6), and similar to the effect on proliferation. MSC~ (CM) promoted the loss of migration through boiling. The effect of the permeability of the skin monolayer: the BMEC resistance value of DMEM-10 culture under the condition of atmospheric oxygen is kept in a relatively stable range within 24 h. The resistance value of the BMEC in the hypoxia state DMEM-10 culture decreases obviously in the anoxic 6~18 h, and the lowest is before the treatment (77.2 + 1.8)%, and the resistance value of the BMEC is 2 within the oxygen deficiency state MSC~ (CM H). There is a sharp increase, at the minimum of about 2 h, for (50.5 + 2.6)% before processing, and a slight increase in the subsequent 2~24 h resistance, but still at a lower level; the resistance to VEGF and MMP-9 inhibitors I makes the BMEC resistance value of MSC~ (CM H) decreased obviously, and the minimum resistance value is divided into (60.3 + 3.6)% and (76 + 2.4)% before treatment.
Conclusion:
1. BMEC can not induce MSC differentiation only through paracrine cytokine, BMEC can induce co cultured MSC to differentiate into endothelium through direct cell contact, and hypoxia plays an important role in inducing MSC to endothelial differentiation, and the direct co cultured BMEC can induce more MSC to differentiate into endothelium more thoroughly under hypoxia conditions.
2. (1) the content of MMP-9 and VEGF in the conditioned medium of MSC was significantly higher than that in the BMEC conditioned medium, and the content of MMP-9 and VEGF in BMEC and MSC conditioned medium was significantly increased by hypoxia. (2) MSC can promote the proliferation and migration of endothelial cells by paracrine mode. MMP-9 plays an important role in promoting BMEC migration in MSC by paracrine mode. In addition, VEGF plays an important role in promoting the proliferation and migration of BMEC. (3) MSC can lead to a sharp increase in the permeability of BMEC monolayer through paracrine mode. A large number of MMP-9 and VEGF secreted by MSC in anoxic state are the cause of the rapid increase in the permeability of BMEC monolayer, which is the treatment of MSC in ischemic cerebrovascular disease. A matter of prudence in the treatment.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2008
【分類號(hào)】:R743;R361.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范傳波,艾輝勝;骨髓間充質(zhì)干細(xì)胞免疫抑制作用及其機(jī)理[J];生物技術(shù)通訊;2005年04期
2 王景昌,白海,吳濤,路繼紅,歐劍峰;造血干細(xì)胞移植預(yù)處理對(duì)人骨髓間充質(zhì)干細(xì)胞的影響及機(jī)制研究[J];西北國防醫(yī)學(xué)雜志;2005年04期
3 馮立新,許倩,王棟,肖桂芝;兔骨髓間充質(zhì)干細(xì)胞的分離方法[J];承德醫(yī)學(xué)院學(xué)報(bào);2005年03期
4 陸曉茜;劉霆;;骨髓間充質(zhì)干細(xì)胞的生物學(xué)特性及其臨床應(yīng)用[J];四川醫(yī)學(xué);2005年12期
5 甘鳳英;葉德富;;間充質(zhì)干細(xì)胞向軟骨方向分化的研究[J];醫(yī)學(xué)綜述;2006年11期
6 李府;馬麗霞;張樂玲;鄭立波;陳穎杰;吳鎮(zhèn);王世富;;細(xì)胞因子聯(lián)合紋狀體條件培養(yǎng)液定向誘導(dǎo)間充質(zhì)干細(xì)胞體外分化為多巴胺能神經(jīng)元的研究(英文)[J];實(shí)用兒科臨床雜志;2009年24期
7 譚艷芳;殷小成;熊玉娟;王艷;;黃芪甲甙對(duì)骨髓間充質(zhì)干細(xì)胞分泌干細(xì)胞因子的影響[J];中國當(dāng)代兒科雜志;2010年04期
8 林滬;陳黎明;王福生;;間充質(zhì)干細(xì)胞在肝臟的分化機(jī)制研究進(jìn)展[J];實(shí)用肝臟病雜志;2010年03期
9 卓本慧,李廷玉;間充質(zhì)干細(xì)胞與神經(jīng)細(xì)胞移植[J];國外醫(yī)學(xué).腦血管疾病分冊(cè);2002年04期
10 郭希民 ,王常勇 ,王永紅 ,段翠密 ,趙強(qiáng) ,孫大銘;人骨髓間充質(zhì)干細(xì)胞分離培養(yǎng)及向軟骨細(xì)胞定向分化的實(shí)驗(yàn)研究[J];中華口腔醫(yī)學(xué)雜志;2003年01期
相關(guān)會(huì)議論文 前10條
1 王巧稚;韓藝;趙宏賢;余鴻;劉廣益;;當(dāng)歸誘導(dǎo)人脂肪間充質(zhì)干細(xì)胞向神經(jīng)細(xì)胞分化和毒性檢測的研究[A];中國解剖學(xué)會(huì)第十一屆全國組織學(xué)與胚胎學(xué)青年學(xué)術(shù)研討會(huì)論文匯編[C];2009年
2 王玉紅;陳光輝;;地黃低聚糖對(duì)人脂肪組織源性間充質(zhì)干細(xì)胞分泌肝細(xì)胞生長因子的影響[A];2010全國中西醫(yī)結(jié)合危重病、急救醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
3 杜鳳移;王皓;楊樹龍;趙繪存;楊英;楊軍;;納米纖維支架對(duì)大鼠間充質(zhì)干細(xì)胞向肝細(xì)胞分化的影響[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)暨首屆生物醫(yī)學(xué)工程前沿科學(xué)研討會(huì)論文集[C];2009年
4 郭勇;張西正;郭春;魏嚴(yán);李瑞欣;徐曉瑩;張永紅;;脂肪間充質(zhì)干細(xì)胞向心肌細(xì)胞分化中心肌發(fā)育相關(guān)基因的表達(dá)[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)2008年年會(huì)暨首屆生物醫(yī)學(xué)工程與臨床論壇論文集[C];2008年
5 朱恒;江小霞;劉元林;張毅;毛寧;;間充質(zhì)干細(xì)胞選擇性調(diào)節(jié)破骨細(xì)胞發(fā)育和功能[A];第13屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要[C];2011年
6 張顥;陶艷玲;邱林;張伯龍;馬軍;陳志哲;劉擁軍;韓忠朝;;一種具有免疫負(fù)調(diào)節(jié)功能的人臍帶源間充質(zhì)干細(xì)胞[A];第12屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要[C];2009年
7 楊少光;池穎;戎麗娟;邢文;盧士紅;趙欽軍;馬鳳霞;韓忠朝;;不同來源間充質(zhì)干細(xì)胞誘導(dǎo)分化成血管內(nèi)皮細(xì)胞的比較[A];第13屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要[C];2011年
8 李杰平;孔佩艷;李佳麗;朱麗丹;孔祥敬;曾東風(fēng);劉紅;王慶余;彭賢貴;陳幸華;張曦;;純化的自體CD34+細(xì)胞聯(lián)合間充質(zhì)干細(xì)胞治療難治性克隆恩病一例并文獻(xiàn)復(fù)習(xí)[A];第13屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要[C];2011年
9 羅高興;程文廣;黃正根;賀偉峰;袁順宗;陳希煒;吳軍;;應(yīng)用人臍帶血間充質(zhì)干細(xì)胞修復(fù)小鼠皮膚缺損創(chuàng)面的實(shí)驗(yàn)研究[A];第六屆全國燒傷救治專題研討會(huì)論文匯編[C];2009年
10 郭振興;鄭翠玲;陳振萍;董文川;楊仁池;;胚胎骨髓來源的間充質(zhì)干細(xì)胞對(duì)人Th17細(xì)胞免疫調(diào)節(jié)作用的研究[A];第12屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 王秋月 王琳;空軍總醫(yī)院采用間充質(zhì)干細(xì)胞救治小腦萎縮[N];科技日?qǐng)?bào);2009年
2 記者 李素鋒;我市首例間充質(zhì)干細(xì)胞移植手術(shù)取得成功[N];臨汾日?qǐng)?bào);2009年
3 記者 王丹 通訊員 艾素;異染性腦白質(zhì)營養(yǎng)不良治療獲突破[N];健康報(bào);2010年
4 記者 白毅;間充質(zhì)干細(xì)胞可促進(jìn)成熟樹突狀細(xì)胞增殖分化[N];中國醫(yī)藥報(bào);2009年
5 張泓;生物醫(yī)藥,2008新突破[N];北方經(jīng)濟(jì)時(shí)報(bào);2008年
6 徐機(jī)玲;姜躍進(jìn);我國骨髓干細(xì)胞移植技術(shù)獲突破[N];中國醫(yī)藥報(bào);2003年
7 時(shí)報(bào)記者 楊曉帆;韓忠朝:中國干細(xì)胞研究領(lǐng)軍者[N];濱海時(shí)報(bào);2010年
8 本報(bào)記者 楊陽騰;北科生物:讓干細(xì)胞創(chuàng)造醫(yī)學(xué)奇跡[N];經(jīng)濟(jì)日?qǐng)?bào);2011年
9 張獻(xiàn)懷 王志紅;抗排異反應(yīng)有了新辦法[N];保健時(shí)報(bào);2009年
10 徐機(jī)玲 姜躍進(jìn);骨髓干細(xì)胞移植我國實(shí)現(xiàn)新突破[N];新華每日電訊;2003年
相關(guān)博士學(xué)位論文 前10條
1 彭飛;620nm非相干紅光對(duì)大鼠骨髓間充質(zhì)干細(xì)胞的光生物調(diào)節(jié)作用[D];華中科技大學(xué);2011年
2 于美嬌;系統(tǒng)歸巢的間充質(zhì)干細(xì)胞在牙周組織修復(fù)再生過程中的作用研究[D];山東大學(xué);2011年
3 李東杰;人臍帶間充質(zhì)干細(xì)胞促進(jìn)創(chuàng)面愈合及體外誘導(dǎo)分化為表皮樣細(xì)胞的實(shí)驗(yàn)研究[D];中國人民解放軍軍醫(yī)進(jìn)修學(xué)院;2011年
4 李寶軍;脂肪間充質(zhì)干細(xì)胞體外誘導(dǎo)及復(fù)合PLGA體內(nèi)異位成軟骨的實(shí)驗(yàn)研究[D];中南大學(xué);2007年
5 朱雅姝;Flk-1~+間充質(zhì)干細(xì)胞對(duì)腫瘤細(xì)胞增殖的抑制作用及其分子機(jī)制研究[D];中國協(xié)和醫(yī)科大學(xué);2008年
6 吳桂珠;脂肪間充質(zhì)干細(xì)胞治療壓力性尿失禁的實(shí)驗(yàn)研究[D];福建醫(yī)科大學(xué);2010年
7 熊卉;轉(zhuǎn)化生長因子β1基因體外轉(zhuǎn)染兔顳下頜關(guān)節(jié)滑膜間充質(zhì)干細(xì)胞向纖維軟骨轉(zhuǎn)化實(shí)驗(yàn)研究[D];武漢大學(xué);2010年
8 苗宗寧;胎盤間充質(zhì)干細(xì)胞與絲素蛋白/羥基磷灰石材料在骨創(chuàng)傷修復(fù)中的實(shí)驗(yàn)研究[D];蘇州大學(xué);2010年
9 梁偉;人骨髓Flk-1~+間充質(zhì)干細(xì)胞抗DNA損傷物質(zhì)影響作用研究[D];中國協(xié)和醫(yī)科大學(xué);2008年
10 趙迎澤;BMP9通過MAPKs通路調(diào)控間充質(zhì)干細(xì)胞成骨分化及其機(jī)制的初步研究[D];重慶醫(yī)科大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 章守琴;人羊膜間充質(zhì)干細(xì)胞支持造血的體外研究[D];昆明醫(yī)學(xué)院;2010年
2 陳芳;臍帶間充質(zhì)干細(xì)胞修復(fù)化療所致卵巢顆粒細(xì)胞損傷的體外實(shí)驗(yàn)[D];暨南大學(xué);2010年
3 張茜真;人臍帶間充質(zhì)干細(xì)胞的分離、鑒定以及干細(xì)胞特異性轉(zhuǎn)錄因子誘導(dǎo)其重編程的研究[D];浙江理工大學(xué);2010年
4 陳義;臍帶間充質(zhì)干細(xì)胞培養(yǎng)及體外重建角膜后板層的初步研究[D];暨南大學(xué);2010年
5 唐子濱;納米級(jí)膠原基骨材料復(fù)合自體脂肪間充質(zhì)干細(xì)胞用于兔后外側(cè)脊柱融合的實(shí)驗(yàn)研究[D];河北醫(yī)科大學(xué);2010年
6 齊凱;人臍帶來源間充質(zhì)干細(xì)胞分離培養(yǎng)方法的優(yōu)化初探[D];山西醫(yī)科大學(xué);2011年
7 馬蘭蘭;不同胎齡人臍帶血間充質(zhì)干細(xì)胞的研究[D];中國醫(yī)科大學(xué);2010年
8 李成華;口腔黏膜間充質(zhì)干細(xì)胞存在及在口腔扁平苔蘚中變化的初步研究[D];第四軍醫(yī)大學(xué);2010年
9 田毅;人臍帶Wharton's jelly間充質(zhì)干細(xì)胞的生物學(xué)特性以及其與腦腫瘤干細(xì)胞共培養(yǎng)的實(shí)驗(yàn)研究[D];鄭州大學(xué);2010年
10 張福麗;間充質(zhì)干細(xì)胞治療肺動(dòng)脈高壓研究進(jìn)展(附肺動(dòng)脈高壓發(fā)病機(jī)制進(jìn)展)[D];山西醫(yī)科大學(xué);2011年
,本文編號(hào):1773251
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1773251.html