缺氧條件下腦微血管內皮細胞與間充質干細胞的相互影響
本文選題:間充質干細胞 + 腦微血管內皮細胞; 參考:《第三軍醫(yī)大學》2008年碩士論文
【摘要】: 研究背景: 骨髓間充質干細胞(mesenchymal stem cells, MSC)是來源于骨髓的成體干細胞,具有多潛能分化性,已證明MSC修復和分化為多種組織的能力,尤其在修復和重建血管方面成為缺血性疾病治療研究的熱點。腦微血管內皮細胞(brain microvascular endothelial cells, BMEC)是構成血腦屏障的最主要組成部分,具有細胞間緊密連接、極少的胞飲囊泡和維持神經組織離子和代謝穩(wěn)定的特殊跨膜轉運系統(tǒng)等獨有生理特點。在缺血性腦血管疾病中,BMEC的損傷是導致血腦屏障開放、腦水腫發(fā)生,從而加重神經元細胞損傷的重要因素,同時缺血半暗區(qū)腦微血管的修復與新生也是挽救缺血受損神經元的關鍵。當前,在干細胞治療缺血性腦血管病的研究方面,多數研究聚焦于干細胞修復受損的神經組織,然而在干細胞對腦缺血部位受損的血腦屏障和微血管內皮細胞影響的研究并未深入。本實驗以缺氧條件下培養(yǎng)BMEC模擬缺血性腦血管疾病中血腦屏障和腦微血管所處的病理生理環(huán)境,觀察BMEC對共培養(yǎng)的MSC分化的影響,以及MSC以旁分泌方式對BMEC增殖、遷移和血腦屏障模型通透性的影響,為MSC應用于缺血性腦血管疾病的治療提供基礎實驗依據。 研究目的: 1.分離、培養(yǎng)及鑒定大鼠BMEC和人骨髓MSC,建立缺氧條件下BMEC與MSC直接與間接共培養(yǎng)的模型,觀察缺氧條件下BMEC對直接與間接共培養(yǎng)的MSC分化的影響。 2.測定MSC與BMEC條件培養(yǎng)液中血管內皮生長因子(vascular endothelial growth factor,VEGF)和基質金屬蛋白酶-9(matrix metalloproteinases-9,MMP-9)含量,觀察缺氧條件下MSC以旁分泌方式對BMEC增殖、遷移及其單層通透性的影響。 研究方法: 1.分離、培養(yǎng)及鑒定大鼠BMEC和人骨髓MSC:采用兩次酶消化法(0.1%Ⅱ型膠原酶,0.1%膠原酶/分散酶)和密度梯度離心法得到純化的腦微血管片段,加入含10ng/ml bFGF、20%胎牛血清和100μg/ml肝素鈉的DMEM高糖完全培養(yǎng)液,接種于涂布Ⅳ型膠原和纖連蛋白的塑料培養(yǎng)瓶,免疫熒光細胞化學法鑒定BMEC的vWF表達;用密度梯度離心法分離人骨髓MSC,采用流式細胞術鑒定MSC的CD29、CD34、CD44、CD105和Flk-1表達。建立缺氧條件下BMEC與MSC直接與間接共培養(yǎng)的模型:缺氧實驗在37℃、93%N2、5%CO_2、2%O_2的缺氧培養(yǎng)箱內進行;間接共培養(yǎng)使用孔徑0.4μm的Millicell Culture Plate Inserts,BMEC以10%胎牛血清的DMEM低糖(DMEM-10)接種于上層(5×10~3/well),將MSC以DMEM-10接種于下層24孔板內(5×10~3/well);直接共培養(yǎng)將兩種細胞以5000:5000cells/ml的比率混合于DMEM-10后接種于培養(yǎng)瓶或蓋玻片上。觀察缺氧條件下BMEC對共培養(yǎng)的MSC分化的影響:分別將直接和間接共培養(yǎng)的細胞在正常和缺氧條件下培養(yǎng)5天,采用流式細胞術(定量檢測Flk-1)和免疫熒光細胞化學法(定性檢測Flk-1和vWF)對MSC的分化程度進行分析。2.①測定MSC與BMEC條件培養(yǎng)液中VEGF和MMP-9含量:收集正常和缺氧條件下兩種細胞的條件培養(yǎng)基得到正常的腦微血管內皮細胞條件培養(yǎng)基(BMEC~(CM N))、間充質干細胞條件培養(yǎng)基(MSC~(CM N)),以及缺氧條件下腦微血管內皮細胞條件培養(yǎng)基(BMEC~(CM H))、間充質干細胞條件培養(yǎng)基(MSC~(CM H)),用ELISA檢測各條件培養(yǎng)基中VEGF和MMP-9的含量;②觀察各條件培養(yǎng)基對BMEC增殖和遷移的影響:使用六種不同培養(yǎng)基(DMEM-10、MSC~(CM N)、MSC~(CM H)、煮沸的MSC~(CM H)培養(yǎng)基、添加抗VEGF抗體和MMP -9抑制劑I的MSC~(CM H)對BMEC進行培養(yǎng),采用Cell Counting Kit-8方法檢測各條件培養(yǎng)基對BMEC增殖的影響,采用Transwell培養(yǎng)體系檢測各條件培養(yǎng)基對BMEC遷移的影響;③觀察各條件培養(yǎng)基對BMEC單層通透性的影響:使用MilliCell-ERS Voltohmmeter測量不同條件培養(yǎng)基(DMEM-10、MSC~(CM N)、MSC~(CM H)、含VEGF抗體的MSC~(CM H)和含MMP-9抑制劑I的MSC~(CM H))對BMEC單層通透性的影響。 結果: 1.流式細胞儀檢測結果表明MSC呈CD29、CD44、CD105陽性表達,CD34和Flk-1陰性表達;免疫熒光細胞化學法檢測BMEC呈vWF陽性表達。常氧和缺氧條件下的間接和直接共培養(yǎng)的細胞均能良好生長。常氧條件下間接共培養(yǎng)MSC的Flk-1和vWF蛋白均為陰性表達。缺氧條件下間接共培養(yǎng)的(7.58±0.58)% (n=6,P=0.034) MSC開始表達Flk-1蛋白,激光共聚焦顯微鏡也顯示少量細胞開始出現(xiàn)紅色熒光,但未見綠色熒光的vWF蛋白表達。正常和缺氧條件下直接共培養(yǎng)5 d時,開始表達Flk-1蛋白的MSC分別占共培養(yǎng)混合細胞數的(13.76±1.67)% (n=6,P0.001)和(23.64±2.50)% (n=6,P0.001),兩者相比有顯著性差異(n=6,P0.001);激光共聚焦也顯示部分MSC開始表達Flk-1,而在常氧共培養(yǎng)細胞中未發(fā)現(xiàn)Flk-1陽性的細胞同時表達vWF,值得關注的是,缺氧直接共培養(yǎng)的混合細胞中,部分Flk-1陽性細胞開始同時表達vWF的綠色熒光。 2.①ELISA檢測條件培養(yǎng)基中VEGF、MMP-9的含量:缺氧導致BMEC和MSC條件培養(yǎng)基中VEGF含量均明顯增高;MSC~(CM H)中VEGF含量明顯高于BMEC~(CM H);BMEC~(~(CM N))中未檢測到MMP-9,MSC~(CM H)中MMP-9含量明顯高于MSC~(CM N)和BMECCM H。②條件培養(yǎng)基對BMEC增殖和遷移的影響:與DMEM-10相比,MSC~(CM N)明顯增強了BMEC的增殖,而MSC~(CM H)對BMEC的增殖作用又明顯強于MSCCM N(0.947±0.103與0.532±0.028,P0.001,n=6);MSC~(CM H)促增殖作用因煮沸而完全喪失,同時VEGF的阻斷抗體可明顯抑制MSC~(CM H)對BMEC的增殖作用(0.947±0.103與0.419±0.034,P0.001,n=6),而MMP-9抑制劑對BMEC的增殖影響不明顯(0.947±0.103與0. 902±0.065,P=0.963,n=6)。與DMEM-10對照相比,MSC~(CM N)明顯增多了BMEC遷移細胞的數量,而MSC~(CM H)對BMEC的遷移作用又明顯強于MSC~(CM N)(238±27與154±24,P0.01,n=6);VEGF的阻斷抗體可明顯抑制MSC~(CM H)對BMEC的遷移作用(238±27與150±20,P0.001,n=6),而MMP-9抑制劑對BMEC的遷移的抑制則更為明顯(238±27與106±18,P0.001,n=6);與對增殖的影響類似,MSC~(CM H)促遷移作用經煮沸處理而完全喪失。③檢測24h內不同條件培養(yǎng)基對內皮單層通透性的影響:常氧條件下DMEM-10培養(yǎng)的BMEC電阻值在24 h內保持在較穩(wěn)定范圍內,缺氧狀態(tài)DMEM-10培養(yǎng)BMEC的電阻值在缺氧6~18 h內出現(xiàn)明顯下降,約在18 h達到最低為處理前的(77.2±1.8)%;缺氧狀態(tài)MSC~(CM H)培養(yǎng)的BMEC的電阻值在2 h內出現(xiàn)急劇增大,約在2 h達到最低,為處理前的(50.5±2.6)%,在隨后的2~24 h電阻值略有回升但仍處于較低水平;抗VEGF抗體和MMP-9抑制劑I使MSC~(CM H)培養(yǎng)的BMEC電阻值下降明顯趨緩,最低電阻值分別為處理前的(60.3±3.6)%和(76.0±2.4)%。 結論: 1.常氧條件下BMEC僅通過旁分泌細胞因子不足以誘導MSC分化,BMEC能夠通過細胞直接接觸誘導共培養(yǎng)的MSC向內皮分化,缺氧在誘導MSC向內皮分化的過程中發(fā)揮重要作用,缺氧條件下,直接共培養(yǎng)的BMEC能誘導更多的MSC更徹底地向內皮分化。 2.①MSC條件培養(yǎng)基中MMP-9和VEGF的含量均明顯高于BMEC條件培養(yǎng)基,缺氧可介導BMEC和MSC條件培養(yǎng)基中MMP-9和VEGF的含量明顯升高。②MSC可通過旁分泌方式促進內皮細胞的增殖和遷移,MMP-9在MSC以旁分泌方式促進BMEC遷移過程中發(fā)揮了重要作用,而VEGF則同時在促進BMEC增殖和遷移過程中發(fā)揮重要作用。③MSC可通過旁分泌方式導致BMEC單層通透性的急劇增大,缺氧狀態(tài)下MSC所分泌的大量MMP-9和VEGF是其導致BMEC單層通透性的急劇增大的原因,這是MSC應用于缺血性腦血管疾病的治療中值得慎重考慮的問題。
[Abstract]:Research background:
Bone marrow mesenchymal stem cells (mesenchymal stem cells (MSC)) are adult stem cells derived from bone marrow and have multiple potential differentiation. It has proved the ability of MSC to repair and differentiate into a variety of tissues, especially in the repair and reconstruction of blood vessels as a hot point for the treatment of ischemic disease. Brain microvascular endothelial cells (brain microvascular endothel). Ial cells, BMEC) is the most important component of the blood brain barrier, which has the unique physiological characteristics such as close intercellular connection, very few vesicles, and special transmembrane transport system to maintain the ion and metabolic stability of the nerve tissue. In ischemic cerebrovascular disease, the damage of BMEC is caused by the opening of the blood brain barrier and the occurrence of brain edema. The key factors for cell injury in heavy neurons, and the repair and regeneration of the cerebral microvessels in the ischemic penumbra are also the key to save the ischemic neurons. Most studies focus on the repair of damaged nerve tissue in stem cells in the stem cell treatment of ischemic cerebrovascular disease. However, it is damaged by stem cells in the cerebral ischemic areas. The effects of blood brain barrier and microvascular endothelial cells were not deeply studied. In this experiment, the pathological and physiological environment of blood brain barrier and cerebral microvascular in ischemic cerebrovascular disease was simulated under hypoxia conditions, and the effect of BMEC on the differentiation of co cultured MSC, and the proliferation, migration and blood brain barrier model of BMEC by MSC by parathellate secreting methods were observed. The effect of type permeability provides a basic experimental basis for the application of MSC in the treatment of ischemic cerebrovascular diseases.
The purpose of the study:
1. isolation, culture and identification of rat BMEC and human bone marrow MSC, and establish a direct and indirect co culture model of BMEC and MSC under the condition of hypoxia, and observe the effect of BMEC on the direct and indirect co culture of MSC under the condition of hypoxia.
2. the contents of vascular endothelial growth factor (vascular endothelial growth factor, VEGF) and matrix metalloproteinase -9 (matrix metalloproteinases-9, MMP-9) in MSC and BMEC conditioned medium were measured, and the effects of paracrine on proliferation, migration and monolayer permeability under hypoxia were observed.
Research methods:
1. isolation, culture and identification of rat BMEC and human bone marrow MSC: using two enzyme digestion (0.1% type II collagenase, 0.1% collagenase / dispersing enzyme) and density gradient centrifugation to obtain the purified cerebral microvascular fragments, adding DMEM high sugar complete culture solution containing 10ng/ml bFGF, 20% fetal bovine serum and 100 g/ml heparin sodium, inoculated with type IV collagen and fiber. The vWF expression of BMEC was identified by immunofluorescence cytochemical method, and human bone marrow MSC was separated by density gradient centrifugation. The expression of CD29, CD34, CD44, CD105 and Flk-1 in MSC was identified by flow cytometry. The model of BMEC and MSC directly and indirectly cultured under the condition of hypoxia was established: the hypoxia experiment was at 37, and 93%N2,5%CO_2,2%O_2 was missing. In the oxygen incubator, Millicell Culture Plate Inserts with 0.4 m pore diameter was indirectly co cultured, BMEC was inoculated on the upper layer (5 x 10~3/well) with the DMEM low sugar (DMEM-10) of the 10% fetal bovine serum, and MSC was inoculated in the lower layer (5 * 10~3/well) in the lower layer (5 x 10~3/well), and the two kinds of cells were mixed at the ratio after mixing directly. The effects of BMEC on the differentiation of co cultured MSC were observed under the condition of hypoxia: direct and indirect co cultured cells were cultured under normal and anoxic conditions for 5 days respectively. Flow cytometry (quantitative detection of Flk-1) and immunofluorescent cytochemistry (qualitative detection of Flk-1 and vWF) were used to differentiate the degree of differentiation of MSC. Analysis of the content of VEGF and MMP-9 in the conditioned medium of MSC and BMEC: to collect the conditioned medium of normal cerebral microvascular endothelial cells (BMEC~ (CM N)), the conditioned medium of mesenchymal stem cells (MSC~ (CM N)) and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium (BM) (BM) under the condition of hypoxia (BM), and the conditioned medium (BM) (BM) in the condition of hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the conditioned medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the condition medium of the cerebral microvascular endothelial cells (BM) under hypoxia conditions (BM), and the condition medium of the cerebral microvascular endothelial cells under the condition of hypoxia (BM) (BM),.2. EC~ (CM H)), the conditioned medium of mesenchymal stem cells (MSC~ (CM H)), the content of VEGF and MMP-9 in the conditioned medium was detected by ELISA. (2) the effects of the culture medium on the proliferation and migration of BMEC were observed. Six different medium (DMEM-10, MSC~), boiling water culture medium were used. The MSC~ (CM H) was used to culture the BMEC, and the Cell Counting Kit-8 method was used to detect the effect of the culture medium on the proliferation of BMEC, and the effect of the culture medium on the BMEC migration was detected by the Transwell culture system. Thirdly, the influence of the medium on the permeability of BMEC monolayer was observed. The effects of DMEM-10 (MSC~, CM N), MSC~ (CM H), MSC~ (CM H) containing VEGF antibody and the inhibitor of the inhibitor containing the inhibitor of VEGF on the permeability of monolayer were studied.
Result:
The results of 1. flow cytometry showed that MSC was CD29, CD44, CD105 positive, CD34 and Flk-1 negative expression, and immunofluorescent cytochemical method was used to detect the positive expression of vWF in BMEC. The indirect and direct co cultured cells under the condition of normoxic and hypoxia could grow well. The Flk-1 and vWF protein of CO cultured MSC under normal oxygen condition were all negative tables. The indirect co culture (7.58 + 0.58)% (n=6, P=0.034) MSC began to express Flk-1 protein in the hypoxic condition. The laser confocal microscope also showed that a small number of cells began to appear red fluorescence, but no green fluorescent vWF protein was expressed. When the normal and hypoxia conditions were directly co cultured 5 D, the MSC that began to express the Flk-1 protein accounted for the co culture mixture respectively. The cell number (13.76 + 1.67)% (n=6, P0.001) and (23.64 + 2.50)% (n=6, P0.001) were significantly different (n=6, P0.001). Laser confocal microscopy also showed that some MSC began to express Flk-1, while no Flk-1 positive cells were found to express vWF in normal oxygen co culture cells. It is worth paying attention to the direct co culture of mixed cells in hypoxia. Some Flk-1 positive cells began to express vWF green fluorescence simultaneously.
2. ELISA detected the content of VEGF, MMP-9 in the conditioned medium: the content of VEGF in the medium of BMEC and MSC was significantly higher than that in the condition medium of BMEC and MSC; the VEGF content in MSC~ (CM H) was obviously higher than BMEC~ (CM). Effect of migration: compared with DMEM-10, MSC~ (CM N) significantly enhanced the proliferation of BMEC, while MSC~ (CM H) significantly increased the proliferation of BMEC than MSCCM N (0.947 + 0.103 and 0.532 + 0.028, P0.001,). 103 and 0.419 + 0.034, P0.001, n=6), and the effect of MMP-9 inhibitors on the proliferation of BMEC was not obvious (0.947 + 0.103 and 0.902 + 0.065, P=0.963, n=6). Compared with DMEM-10, MSC~ (CM N) significantly increased the number of BMEC migration cells, and the migration of MSC~ (238 + 27 and 154 + 0.947); The antibody could obviously inhibit the migration of MSC~ (CM H) to BMEC (238 + 27 and 150 + 20, P0.001, n=6), while the inhibition of MMP-9 inhibitor to BMEC migration was more obvious (238 + 27 and 106 + 18, P0.001, n=6), and similar to the effect on proliferation. MSC~ (CM) promoted the loss of migration through boiling. The effect of the permeability of the skin monolayer: the BMEC resistance value of DMEM-10 culture under the condition of atmospheric oxygen is kept in a relatively stable range within 24 h. The resistance value of the BMEC in the hypoxia state DMEM-10 culture decreases obviously in the anoxic 6~18 h, and the lowest is before the treatment (77.2 + 1.8)%, and the resistance value of the BMEC is 2 within the oxygen deficiency state MSC~ (CM H). There is a sharp increase, at the minimum of about 2 h, for (50.5 + 2.6)% before processing, and a slight increase in the subsequent 2~24 h resistance, but still at a lower level; the resistance to VEGF and MMP-9 inhibitors I makes the BMEC resistance value of MSC~ (CM H) decreased obviously, and the minimum resistance value is divided into (60.3 + 3.6)% and (76 + 2.4)% before treatment.
Conclusion:
1. BMEC can not induce MSC differentiation only through paracrine cytokine, BMEC can induce co cultured MSC to differentiate into endothelium through direct cell contact, and hypoxia plays an important role in inducing MSC to endothelial differentiation, and the direct co cultured BMEC can induce more MSC to differentiate into endothelium more thoroughly under hypoxia conditions.
2. (1) the content of MMP-9 and VEGF in the conditioned medium of MSC was significantly higher than that in the BMEC conditioned medium, and the content of MMP-9 and VEGF in BMEC and MSC conditioned medium was significantly increased by hypoxia. (2) MSC can promote the proliferation and migration of endothelial cells by paracrine mode. MMP-9 plays an important role in promoting BMEC migration in MSC by paracrine mode. In addition, VEGF plays an important role in promoting the proliferation and migration of BMEC. (3) MSC can lead to a sharp increase in the permeability of BMEC monolayer through paracrine mode. A large number of MMP-9 and VEGF secreted by MSC in anoxic state are the cause of the rapid increase in the permeability of BMEC monolayer, which is the treatment of MSC in ischemic cerebrovascular disease. A matter of prudence in the treatment.
【學位授予單位】:第三軍醫(yī)大學
【學位級別】:碩士
【學位授予年份】:2008
【分類號】:R743;R361.2
【相似文獻】
相關期刊論文 前10條
1 范傳波,艾輝勝;骨髓間充質干細胞免疫抑制作用及其機理[J];生物技術通訊;2005年04期
2 王景昌,白海,吳濤,路繼紅,歐劍峰;造血干細胞移植預處理對人骨髓間充質干細胞的影響及機制研究[J];西北國防醫(yī)學雜志;2005年04期
3 馮立新,許倩,王棟,肖桂芝;兔骨髓間充質干細胞的分離方法[J];承德醫(yī)學院學報;2005年03期
4 陸曉茜;劉霆;;骨髓間充質干細胞的生物學特性及其臨床應用[J];四川醫(yī)學;2005年12期
5 甘鳳英;葉德富;;間充質干細胞向軟骨方向分化的研究[J];醫(yī)學綜述;2006年11期
6 李府;馬麗霞;張樂玲;鄭立波;陳穎杰;吳鎮(zhèn);王世富;;細胞因子聯(lián)合紋狀體條件培養(yǎng)液定向誘導間充質干細胞體外分化為多巴胺能神經元的研究(英文)[J];實用兒科臨床雜志;2009年24期
7 譚艷芳;殷小成;熊玉娟;王艷;;黃芪甲甙對骨髓間充質干細胞分泌干細胞因子的影響[J];中國當代兒科雜志;2010年04期
8 林滬;陳黎明;王福生;;間充質干細胞在肝臟的分化機制研究進展[J];實用肝臟病雜志;2010年03期
9 卓本慧,李廷玉;間充質干細胞與神經細胞移植[J];國外醫(yī)學.腦血管疾病分冊;2002年04期
10 郭希民 ,王常勇 ,王永紅 ,段翠密 ,趙強 ,孫大銘;人骨髓間充質干細胞分離培養(yǎng)及向軟骨細胞定向分化的實驗研究[J];中華口腔醫(yī)學雜志;2003年01期
相關會議論文 前10條
1 王巧稚;韓藝;趙宏賢;余鴻;劉廣益;;當歸誘導人脂肪間充質干細胞向神經細胞分化和毒性檢測的研究[A];中國解剖學會第十一屆全國組織學與胚胎學青年學術研討會論文匯編[C];2009年
2 王玉紅;陳光輝;;地黃低聚糖對人脂肪組織源性間充質干細胞分泌肝細胞生長因子的影響[A];2010全國中西醫(yī)結合危重病、急救醫(yī)學學術會議論文匯編[C];2010年
3 杜鳳移;王皓;楊樹龍;趙繪存;楊英;楊軍;;納米纖維支架對大鼠間充質干細胞向肝細胞分化的影響[A];天津市生物醫(yī)學工程學會第29屆學術年會暨首屆生物醫(yī)學工程前沿科學研討會論文集[C];2009年
4 郭勇;張西正;郭春;魏嚴;李瑞欣;徐曉瑩;張永紅;;脂肪間充質干細胞向心肌細胞分化中心肌發(fā)育相關基因的表達[A];天津市生物醫(yī)學工程學會2008年年會暨首屆生物醫(yī)學工程與臨床論壇論文集[C];2008年
5 朱恒;江小霞;劉元林;張毅;毛寧;;間充質干細胞選擇性調節(jié)破骨細胞發(fā)育和功能[A];第13屆全國實驗血液學會議論文摘要[C];2011年
6 張顥;陶艷玲;邱林;張伯龍;馬軍;陳志哲;劉擁軍;韓忠朝;;一種具有免疫負調節(jié)功能的人臍帶源間充質干細胞[A];第12屆全國實驗血液學會議論文摘要[C];2009年
7 楊少光;池穎;戎麗娟;邢文;盧士紅;趙欽軍;馬鳳霞;韓忠朝;;不同來源間充質干細胞誘導分化成血管內皮細胞的比較[A];第13屆全國實驗血液學會議論文摘要[C];2011年
8 李杰平;孔佩艷;李佳麗;朱麗丹;孔祥敬;曾東風;劉紅;王慶余;彭賢貴;陳幸華;張曦;;純化的自體CD34+細胞聯(lián)合間充質干細胞治療難治性克隆恩病一例并文獻復習[A];第13屆全國實驗血液學會議論文摘要[C];2011年
9 羅高興;程文廣;黃正根;賀偉峰;袁順宗;陳希煒;吳軍;;應用人臍帶血間充質干細胞修復小鼠皮膚缺損創(chuàng)面的實驗研究[A];第六屆全國燒傷救治專題研討會論文匯編[C];2009年
10 郭振興;鄭翠玲;陳振萍;董文川;楊仁池;;胚胎骨髓來源的間充質干細胞對人Th17細胞免疫調節(jié)作用的研究[A];第12屆全國實驗血液學會議論文摘要[C];2009年
相關重要報紙文章 前10條
1 王秋月 王琳;空軍總醫(yī)院采用間充質干細胞救治小腦萎縮[N];科技日報;2009年
2 記者 李素鋒;我市首例間充質干細胞移植手術取得成功[N];臨汾日報;2009年
3 記者 王丹 通訊員 艾素;異染性腦白質營養(yǎng)不良治療獲突破[N];健康報;2010年
4 記者 白毅;間充質干細胞可促進成熟樹突狀細胞增殖分化[N];中國醫(yī)藥報;2009年
5 張泓;生物醫(yī)藥,2008新突破[N];北方經濟時報;2008年
6 徐機玲;姜躍進;我國骨髓干細胞移植技術獲突破[N];中國醫(yī)藥報;2003年
7 時報記者 楊曉帆;韓忠朝:中國干細胞研究領軍者[N];濱海時報;2010年
8 本報記者 楊陽騰;北科生物:讓干細胞創(chuàng)造醫(yī)學奇跡[N];經濟日報;2011年
9 張獻懷 王志紅;抗排異反應有了新辦法[N];保健時報;2009年
10 徐機玲 姜躍進;骨髓干細胞移植我國實現(xiàn)新突破[N];新華每日電訊;2003年
相關博士學位論文 前10條
1 彭飛;620nm非相干紅光對大鼠骨髓間充質干細胞的光生物調節(jié)作用[D];華中科技大學;2011年
2 于美嬌;系統(tǒng)歸巢的間充質干細胞在牙周組織修復再生過程中的作用研究[D];山東大學;2011年
3 李東杰;人臍帶間充質干細胞促進創(chuàng)面愈合及體外誘導分化為表皮樣細胞的實驗研究[D];中國人民解放軍軍醫(yī)進修學院;2011年
4 李寶軍;脂肪間充質干細胞體外誘導及復合PLGA體內異位成軟骨的實驗研究[D];中南大學;2007年
5 朱雅姝;Flk-1~+間充質干細胞對腫瘤細胞增殖的抑制作用及其分子機制研究[D];中國協(xié)和醫(yī)科大學;2008年
6 吳桂珠;脂肪間充質干細胞治療壓力性尿失禁的實驗研究[D];福建醫(yī)科大學;2010年
7 熊卉;轉化生長因子β1基因體外轉染兔顳下頜關節(jié)滑膜間充質干細胞向纖維軟骨轉化實驗研究[D];武漢大學;2010年
8 苗宗寧;胎盤間充質干細胞與絲素蛋白/羥基磷灰石材料在骨創(chuàng)傷修復中的實驗研究[D];蘇州大學;2010年
9 梁偉;人骨髓Flk-1~+間充質干細胞抗DNA損傷物質影響作用研究[D];中國協(xié)和醫(yī)科大學;2008年
10 趙迎澤;BMP9通過MAPKs通路調控間充質干細胞成骨分化及其機制的初步研究[D];重慶醫(yī)科大學;2010年
相關碩士學位論文 前10條
1 章守琴;人羊膜間充質干細胞支持造血的體外研究[D];昆明醫(yī)學院;2010年
2 陳芳;臍帶間充質干細胞修復化療所致卵巢顆粒細胞損傷的體外實驗[D];暨南大學;2010年
3 張茜真;人臍帶間充質干細胞的分離、鑒定以及干細胞特異性轉錄因子誘導其重編程的研究[D];浙江理工大學;2010年
4 陳義;臍帶間充質干細胞培養(yǎng)及體外重建角膜后板層的初步研究[D];暨南大學;2010年
5 唐子濱;納米級膠原基骨材料復合自體脂肪間充質干細胞用于兔后外側脊柱融合的實驗研究[D];河北醫(yī)科大學;2010年
6 齊凱;人臍帶來源間充質干細胞分離培養(yǎng)方法的優(yōu)化初探[D];山西醫(yī)科大學;2011年
7 馬蘭蘭;不同胎齡人臍帶血間充質干細胞的研究[D];中國醫(yī)科大學;2010年
8 李成華;口腔黏膜間充質干細胞存在及在口腔扁平苔蘚中變化的初步研究[D];第四軍醫(yī)大學;2010年
9 田毅;人臍帶Wharton's jelly間充質干細胞的生物學特性以及其與腦腫瘤干細胞共培養(yǎng)的實驗研究[D];鄭州大學;2010年
10 張福麗;間充質干細胞治療肺動脈高壓研究進展(附肺動脈高壓發(fā)病機制進展)[D];山西醫(yī)科大學;2011年
,本文編號:1773251
本文鏈接:http://sikaile.net/yixuelunwen/shiyanyixue/1773251.html