原發(fā)全面強(qiáng)直陣攣性癲癇腦結(jié)構(gòu)損傷網(wǎng)絡(luò)機(jī)制研究
本文選題:皮層厚度 + 丘腦; 參考:《南方醫(yī)科大學(xué)》2015年碩士論文
【摘要】:[目的]以往研究表明原發(fā)全面強(qiáng)直陣攣性癲癇(idiopathic generalized epilepsy with generalized tonic colonic seizure, IGE-GTCS)存在丘腦及額葉皮層等灰質(zhì)結(jié)構(gòu)的萎縮,結(jié)構(gòu)協(xié)變分析發(fā)現(xiàn)丘腦及皮層間的灰質(zhì)形態(tài)學(xué)改變存在密切相關(guān)關(guān)系,認(rèn)為癲癇丘腦-皮層網(wǎng)絡(luò)是結(jié)構(gòu)協(xié)變網(wǎng)絡(luò)(structural covariance network, SCN)的基礎(chǔ),但目前缺乏直接的解剖學(xué)證據(jù)。本研究采用聯(lián)合結(jié)構(gòu)形態(tài)學(xué)的皮層厚度分析及彌散張量成像(diffusion tensor imaging,DTI)技術(shù)對(duì)IGE-GTCS患者大腦皮層形態(tài)學(xué)改變的網(wǎng)絡(luò)組織模式進(jìn)行研究,構(gòu)建對(duì)應(yīng)丘腦-皮層灰質(zhì)SCN的白質(zhì)纖維網(wǎng)絡(luò)基礎(chǔ),探究IGE-GTCS腦結(jié)構(gòu)形態(tài)學(xué)協(xié)同改變的病理生理機(jī)制。[材料和方法]66例IGE-GTCS患者和66例年齡、性別匹配的健康志愿者作為正常對(duì)照(healthy control, HC)納入本研究。使用德國(guó)西門子Magnetom Trio 3.0T磁共振采集高分辨率T1結(jié)構(gòu)數(shù)據(jù)及DTI數(shù)據(jù)。采用連接組計(jì)算機(jī)系統(tǒng)對(duì)高分辨率T1結(jié)構(gòu)數(shù)據(jù)進(jìn)行處理,通過(guò)圖像降噪、顱骨剝離、皮層重建、圖像配準(zhǔn)得到受試者大腦皮層數(shù)據(jù),平滑處理后供下一步使用。計(jì)算大腦平均皮層厚度,并利用丘腦模板分割得到每名受試者丘腦體積。采用兩樣本t檢驗(yàn)比較IGE-GTCS組及HC組丘腦體積及個(gè)體平均皮層厚度差異。利用Surfstat軟件,采用兩樣本t檢驗(yàn)比較IGE-GTCS組及正常對(duì)照組皮層厚度腦圖差異;采用相關(guān)分析分別構(gòu)建患者及正常人的丘腦-皮層灰質(zhì)SCN,并比較兩組間差異,提取患者、正常人SCN及組間差異所涉及皮層腦區(qū)作為感興趣區(qū)(region of interest, ROI)。利用PANDA軟件包,對(duì)所有受試者DTI數(shù)據(jù)進(jìn)行處理,采用確定性追蹤的方法,追蹤丘腦至前一步所提取的所有ROI間的白質(zhì)纖維束,纖維數(shù)量(fibernumber, FN)大于1則認(rèn)為兩個(gè)節(jié)點(diǎn)間存在白質(zhì)纖維連接,計(jì)算該纖維束平均各向異性分?jǐn)?shù)(Fractional anisotropy, FA)。采用兩樣本t檢驗(yàn)比較組間組間FN及FA值差異,及丘腦-皮層厚度相關(guān)腦區(qū)與丘腦-皮層白質(zhì)纖維構(gòu)成比差異。[結(jié)果]IGE-GTCS組丘腦體積(14793.68±1467.82mm3)明顯小于HC組(15794.79±1500.38,P0.05)。IGE-GTCS組全腦平均皮層厚度(2.45±0.09mm)與HC組(2.47±0.09)差異無(wú)統(tǒng)計(jì)學(xué)意義(P=0.226)。兩組間皮層厚度腦圖比較結(jié)果:IGE-GTCS組較HC組雙側(cè)前扣帶回、中央前回、眶額部皮層、顳極,及右側(cè)中央后回等腦區(qū)皮層厚度下降;雙側(cè)后扣帶回、楔前葉及枕中回皮層厚度增加。IGE-GTCS組中,大腦皮層厚度與丘腦體積呈正相關(guān)關(guān)系的腦區(qū)大體位于雙側(cè)顳中回、梭狀回以及海馬區(qū);呈負(fù)相關(guān)相關(guān)的腦區(qū)大體位于雙側(cè)前扣帶回、額中回及中央后回。在HC組中,大腦皮層厚度與丘腦體積呈正相關(guān)關(guān)系的腦區(qū)大體位于雙側(cè)顳上回及顳下回,左側(cè)中央后回,右側(cè)前扣帶回、內(nèi)側(cè)額上回;呈負(fù)相關(guān)關(guān)系的腦區(qū)主要位于左側(cè)楔葉、楔前葉,右側(cè)枕中回、頂下小葉,雙側(cè)海馬及海馬旁回。IGE-GTCS患者相較于正常人,丘腦體積-皮層厚度相關(guān)趨勢(shì)上升的腦區(qū)主要位于左側(cè)舌回、楔葉、楔前葉、顳下回,右側(cè)顳上回、中央前回、中央后回、海馬及海馬旁回。相關(guān)趨勢(shì)下降的腦區(qū)主要位于雙側(cè)內(nèi)側(cè)前額葉及背外側(cè)前額葉。丘腦-皮層IGE-GTCS組平均FA值降低的纖維束共有4束,分別由丘腦連至左側(cè)海馬及海馬旁回,右側(cè)海馬及海馬旁回,右側(cè)島葉,左側(cè)邊緣葉及舌葉;其中IGE-GTCS組丘腦理解左側(cè)邊緣葉及舌葉纖維束FN值較HC組降低。[結(jié)論]IGE-GTCS患者在疾病狀態(tài)長(zhǎng)期影響下,發(fā)生了丘腦-皮層灰質(zhì)SCN重塑,表現(xiàn)為丘腦及以額葉為主的大腦皮層萎縮,以頂、枕葉為主大腦皮層厚度增加,并且額葉與丘腦的相關(guān)趨勢(shì)降低。而白質(zhì)纖維網(wǎng)絡(luò)作為解剖學(xué)基礎(chǔ),在一定程度上介導(dǎo)了IGE-GTCS灰質(zhì)SCN的重塑。IGE-GTCS患者部分纖維束傳導(dǎo)性下降,則進(jìn)一步提示丘腦-皮層白質(zhì)纖維網(wǎng)絡(luò)損傷可能具有特異性,說(shuō)明癲癇疾病導(dǎo)致的腦網(wǎng)絡(luò)病理生理改變可能存在更復(fù)雜的生物學(xué)機(jī)制。[目的]:IGE-GTCS丘腦-皮層SCN分析發(fā)現(xiàn),患者丘腦-皮層灰質(zhì)形態(tài)學(xué)萎縮存在密切相關(guān)關(guān)系,提示癲癇疾病狀態(tài)影響下特異腦區(qū)灰質(zhì)結(jié)構(gòu)的塑形。但是,這種腦區(qū)間灰質(zhì)結(jié)構(gòu)改變的因果關(guān)系,以及其與癲癇疾病進(jìn)程之間的關(guān)系尚不明確。本研究引入Granger因果網(wǎng)絡(luò)分析技術(shù),觀察隨著癲癇疾病的進(jìn)展,丘腦癲癇源區(qū)灰質(zhì)萎縮對(duì)其他腦區(qū)結(jié)構(gòu)改變的影響。[材料和方法]101名IGE-GTCS患者被納入本研究,另外納入了101名年齡、性別匹配的健康志愿者作為HC。使用德國(guó)西門子Magnetom Trio 3.0T磁共振采集高分辨率T1結(jié)構(gòu)數(shù)據(jù)。采用DPARSF軟件對(duì)高分辨率T1結(jié)構(gòu)數(shù)據(jù)進(jìn)行預(yù)處理,通過(guò)計(jì)算機(jī)算法進(jìn)行配準(zhǔn)、分割、調(diào)制及平滑處理后得到每名受試者的灰質(zhì)結(jié)構(gòu)腦圖。采用兩樣本t檢驗(yàn)對(duì)預(yù)處理后的灰質(zhì)圖像進(jìn)行組間比較。并對(duì)IGE-GTCS組受試者全腦灰質(zhì)與病程進(jìn)行基于體素的相關(guān)分析。根據(jù)組間兩樣本t檢驗(yàn)的結(jié)果,提取IGE-GTCS組特異性腦損傷區(qū)域?yàn)镽OI。將IGE-GTCS組所有被試按病程由短到長(zhǎng)排序,病程相同的患者則按發(fā)作頻率由低到高排序。以上一步提取特異性腦損傷區(qū)域?yàn)镽OI,以病程為時(shí)間序列,采用基于系數(shù)的Granger分析方法,將ROI時(shí)間序列作為x(n),全腦每一個(gè)體素的時(shí)間序列作為y(n),計(jì)算Fx-y,最終得到ROI到全腦的Granger因果效應(yīng)圖。[結(jié)果]與HC組比較,IGE-GTCS組出現(xiàn)以右側(cè)丘腦、島葉,雙側(cè)內(nèi)側(cè)前額葉、眶額部皮層及小腦半球?yàn)橹鞯幕屹|(zhì)體積下降,未發(fā)現(xiàn)灰質(zhì)體積增加腦區(qū)。IGE-GTCS患者中與病程呈負(fù)相關(guān)關(guān)系的腦區(qū)主要有雙側(cè)丘腦、海馬及海馬旁回、島葉、中央旁小葉、補(bǔ)充運(yùn)動(dòng)區(qū)及小腦半球,未發(fā)現(xiàn)正相關(guān)關(guān)系腦區(qū)。根據(jù)兩樣本t檢驗(yàn)結(jié)果,以雙側(cè)丘腦為ROI, Granger因果效應(yīng)分析結(jié)果顯示,IGE-GTCS患者丘腦主要正向驅(qū)動(dòng)雙側(cè)前扣帶回、眶額部皮層、楔前葉、頂下小葉、舌回、島葉、顳下回、尾狀核、小腦半球;主要負(fù)向驅(qū)動(dòng)雙側(cè)額葉、頂葉及顳葉的部分背外側(cè)皮層及右側(cè)小腦后葉。[結(jié)論]IGE-GTCS患者存在丘腦、額葉為主的腦結(jié)構(gòu)損傷,表現(xiàn)為灰質(zhì)體積下降,并隨著病程的延長(zhǎng),丘腦-皮層環(huán)路腦結(jié)構(gòu)的損傷趨于嚴(yán)重。這種丘腦與額葉之間特殊的丘腦-皮層環(huán)路異常,可能導(dǎo)致了IGE-GTCS患者的意識(shí)損害。而額葉等腦區(qū)的損傷繼發(fā)于丘腦損傷之后,提示IGE腦損害首先作用于丘腦。IGE-GTCS患者特定腦結(jié)構(gòu)的損傷,及相關(guān)連接效應(yīng)的異常,將幫助我們更進(jìn)一步理解IGE-GTCS的起源及進(jìn)展機(jī)制,有望對(duì)IGE的靶向治療研究提供形態(tài)學(xué)證據(jù)。[目的]:IGE-GTCS患者常規(guī)影像學(xué)檢查無(wú)法發(fā)現(xiàn)明顯局灶性結(jié)構(gòu)異常,缺乏手術(shù)指征,以長(zhǎng)期口服抗癲癇藥物(antiepileptic drugs, AEDs)治療為主。長(zhǎng)期乃至終身服用AEDs,易造成耐藥及肝腎功能損傷。另一方面,AEDs在抑制神經(jīng)元異常放電的同時(shí),可能造成意識(shí)損傷。本研究采用基于體素的形態(tài)學(xué)分析方法,對(duì)口服丙戊酸(valproic acid, VPA)的IGE-GTCS患者進(jìn)行研究,探究VPA對(duì)腦灰質(zhì)結(jié)構(gòu)的影響,為其藥理作用的生物學(xué)機(jī)制提供神經(jīng)影像學(xué)證據(jù)。[材料和方法]19名服用VPA治療的IGE-GTCS患者,19名未服藥患者被納入本研究及19名健康志愿者納入本研究。使用德國(guó)西門子Magnetom Trio 3.0T磁共振采集高分辨率T1結(jié)構(gòu)數(shù)據(jù)。采用DPARSF軟件對(duì)高分辨率T1結(jié)構(gòu)數(shù)據(jù)進(jìn)行預(yù)處理,通過(guò)計(jì)算機(jī)算法進(jìn)行配準(zhǔn)、分割、調(diào)制及平滑處理后得到每名受試者的灰質(zhì)結(jié)構(gòu)腦圖。采用方差分析對(duì)預(yù)處理后的灰質(zhì)圖像進(jìn)行比較。針對(duì)服藥組患者,將服藥時(shí)間與全腦灰質(zhì)體積進(jìn)行體素依賴的相關(guān)分析,將性別、年齡納為協(xié)變量,排除對(duì)結(jié)果干擾?紤]到病程可能是一個(gè)混淆因素,可能影響相關(guān)分析結(jié)果,將性別、年齡及病程均納為協(xié)變量進(jìn)行回歸,再次將服藥時(shí)間與全腦灰質(zhì)體積進(jìn)行體素依賴的相關(guān)分析。[結(jié)果]兩組患者雙側(cè)額葉體積較正常對(duì)照組下降。服藥組患者腦灰質(zhì)體積增加的區(qū)域大致呈對(duì)稱性分布,以雙側(cè)背外側(cè)額葉、尾狀核及小腦半球?yàn)橹?同時(shí)雙側(cè)中央后回灰質(zhì)體積萎縮。當(dāng)只將性別、年齡納為協(xié)變量時(shí),雙側(cè)丘腦、殼核與服藥時(shí)間呈正相關(guān)關(guān)系,雙側(cè)小腦后葉與病程呈負(fù)相關(guān)關(guān)系。當(dāng)將病程、性別、年齡均納為協(xié)變量時(shí),雙側(cè)丘腦、殼核、島葉與服藥時(shí)間呈正相關(guān)關(guān)系,雙側(cè)小腦前葉與病程呈負(fù)相關(guān)關(guān)系。[結(jié)論]采用VBM的方法發(fā)現(xiàn)服用VPA的GTCS病人較未服藥病人,出現(xiàn)以雙側(cè)背外側(cè)額葉、尾狀核及小腦半球?yàn)橹鞯哪X區(qū)灰質(zhì)體積增加,并且隨著服藥時(shí)間的延長(zhǎng),雙側(cè)殼核、丘腦體積增加,而這些腦區(qū)跟意識(shí)控制及運(yùn)動(dòng)控制等密切相關(guān),也是VPA的重要作用靶區(qū),提示可能由于以VPA為主的AEDs抑制了癇樣放電或者癲癇臨床發(fā)作,從而延緩了相應(yīng)腦區(qū)的亞臨床損傷。
[Abstract]:[Objective] the previous study showed that the idiopathic generalized epilepsy with generalized tonic colonic seizure, IGE-GTCS existed in the gray matter structure of the thalamus and frontal cortex. The structural covariant analysis found that there was a close correlation between the gray matter morphologic changes between the thalamus and the cortex. The brain cortical network is the basis of the structural covariance network (SCN), but it lacks direct anatomical evidence at present. This study uses the cortical thickness analysis of the joint structural morphology and the diffusion tensor imaging (DTI) technique to organize the morphological changes of the cerebral cortex of the patients with IGE-GTCS. The basis of the white matter fiber network corresponding to the thalamus cortical gray matter SCN was constructed to explore the pathophysiological mechanism of the IGE-GTCS brain structure morphological synergetic change. [materials and methods]66 cases IGE-GTCS patients and 66 age, sex matched healthy volunteers as normal controls (healthy control, HC) were included in this study. The high resolution T1 structure data and DTI data were collected by the Magnetom Trio 3.0T magnetic resonance. The high resolution T1 structure data were processed by the connection group computer system. The brain cortical data of the subjects were obtained by image denoising, skull peeling, cortical reconstruction and image registration, and then used for the next step after smoothing treatment. The average cerebral cortex thickness was calculated. The volume of thalamus was obtained by dividing the thalamus template. The difference of thalamus volume and average cortical thickness between group IGE-GTCS and HC group was compared by two sample t test. Using Surfstat software, two samples of t test were used to compare the difference of cerebral cortex thickness between the IGE-GTCS group and the normal control group, and the patients were constructed by correlation analysis. And the normal human thalamocortical gray matter SCN, and compare the differences between the two groups, the extraction patients, the normal people SCN and the difference between the groups involved in the cortex brain region as the region of interest (region of interest, ROI). Using PANDA software package, all subjects DTI data processing, using the method of true qualitative tracking, tracking the thalamus to the previous step extraction of the extraction The white matter fiber bundles and the number of fibers (fibernumber, FN) were greater than 1 between the ROI and the white matter fiber connections between the two nodes. The average anisotropy fraction of the fiber bundles was calculated (Fractional anisotropy, FA). The difference between the FN and FA values among the groups was compared with the two sample t test, and the thalamic cortex thickness related brain area and the thalamus cortical white matter fiber were compared. [results of group]IGE-GTCS, the volume of thalamus (14793.68 + 1467.82mm3) was significantly smaller than that of group HC (15794.79 + 1500.38, P0.05), the average cortical thickness of group.IGE-GTCS (2.45 + 0.09mm) and HC group (2.47 + 0.09) had no statistical significance (P=0.226). The comparison between the two groups of the mesothelial thickness of the mesothelial layer of the two group: the IGE-GTCS group was compared with the HC group bilateral anterior cingulate gyrus, In the precentral gyrus, the cortical thickness of the orbital frontal cortex, the temporal pole, and the right posterior central gyrus decreased, and the thickness of the posterior cingulate gyrus, the anterior cineus and the middle occipital gyrus increased in the.IGE-GTCS group. The cerebral cortex, which had a positive correlation with the volume of the thalamus, was generally located in the middle temporal gyrus, fusiform gyrus, and the hippocampus. In the HC group, the cerebral cortex, which has a positive correlation with the volume of the thalamus, is generally located in the bilateral superior temporal and inferior temporal gyrus, the left posterior central gyrus, the right anterior cingulate gyrus, the medial frontal gyrus, and the negative correlation of the brain area in the left cuneate, the anterior wedge, the right side, and the right side. Occipital gyrus, inferior parietal lobule, bilateral hippocampal and paraphippocampal.IGE-GTCS patients were compared to normal people. The brain areas of the thalamus volume cortical thickness increased mainly in the left lingual gyrus, wedge, pretemporal gyrus, right temporal gyrus, the anterior central gyrus, the posterior central gyrus, the hippocampus and the parahippocampal gyrus. The average FA value of the medial prefrontal lobe and the dorsolateral prefrontal lobe in the thalamus IGE-GTCS group had 4 bundles, including the thalamus to the left hippocampus and the parahippocampal gyrus, the right hippocampus and the parahippocampal gyrus, the right Island leaf, the left edge leaf and the tongue leaf, and the IGE-GTCS group thalamus understood that the FN value of the left marginal lobe and the ligule fiber bundle was lower than that of the HC group. [Conclusion: [Conclusion]]IGE-GTCS patients have the thalamocortical gray matter SCN remodeling under the long-term influence of the disease, showing the atrophy of the thalamus and the frontal cortex. The thickness of the cerebral cortex increases with the top and the occipital lobe, and the correlation between the frontal lobe and the thalamus is reduced. The decrease of partial fibrous conduction in the reshaped.IGE-GTCS patients with IGE-GTCS gray matter SCN may further suggest that the damage of the thalamic cortex white matter fiber network may be specific, indicating that the pathophysiological changes in the brain network caused by epilepsy may have more complex biological mechanisms. [Objective]:IGE-GTCS thalamic - cortical SCN analysis found that There is a close correlation between the morphological atrophy of the thalamus cortical gray matter in the patient, which suggests that the state of the epileptic state affects the shape of the gray matter structure in the specific brain region. However, the causal relationship between the change of the gray matter structure and the relationship with the process of epilepsy is not clear. This study introduced the Granger causality network analysis technique to observe. With the progress of epilepsy, the effect of gray matter in the source area of the thalamus on the structural changes in other brain regions. [materials and methods]101 IGE-GTCS patients were included in this study, and 101 age, sex matched healthy volunteers were used as HC. to collect high resolution T1 structure data using German SIEMENS Magnetom Trio 3.0T MRI. The DPARSF software is used to preprocess the high resolution T1 structure data. The gray matter structure of each person is obtained after registration, segmentation, modulation and smoothing by computer algorithm. Two sample t tests are used to compare the pre processed gray matter images. The whole brain gray matter and the course of disease in the IGE-GTCS group are based on the basis of comparison. The correlation analysis of voxel. According to the results of the two sample t test among the groups, the specific brain damage area of group IGE-GTCS was extracted by ROI.. All the subjects in group IGE-GTCS were sorted from short to long in the course of disease. The patients with the same course of disease were sorted from low to high according to the frequency of attack, and the specific brain injury area was ROI, and the course of disease was time series, Using the Granger analysis method based on coefficient, the time series of ROI was used as X (n) and the time series of each individual element in the whole brain was used as y (n), and Fx-y was calculated. Finally, the Granger causality effect of ROI to the whole brain was obtained. [results] the IGE-GTCS group appeared in the right thalamus, the insula, the bilateral medial prefrontal lobe, the orbital frontal cortex and the cerebellar hemisphere. The volume of gray matter decreased, and there was no increase in the volume of gray matter in the brain area of.IGE-GTCS patients with negative correlation with the course of the disease. There were bilateral thalamus, hippocampus and parahippocampal gyrus, insula, paracentral lobule, supplemental motor area and cerebellar hemisphere, and no positive correlation was found in the brain region. The root of the two samples was t test, and bilateral thalamus was ROI, Granger The results of causal effect analysis showed that the main positive drive of the thalamus in IGE-GTCS patients was bilateral anterior cingulate gyrus, orbital frontal cortex, anterior lobe, lower lobule, lingual gyrus, insula, inferior temporal gyrus, caudate nucleus, cerebellar hemisphere; main negative lateral frontal cortex, partial dorsolateral cortex of the parietal and temporal lobe and right posterior lobe of the cerebellum. [conclusion]IGE-GTCS patients have hillock. Brain, frontal lobe, mainly brain structural damage, manifested as gray matter volume, and as the duration of the disease prolonged, the damage to the brain structure of the thalamus cortical loop tends to be serious. This special thalamus cortical loop between the thalamus and frontal lobes may lead to the impairment of consciousness in IGE-GTCS patients. It is suggested that IGE brain damage first acts on the damage of specific brain structure in the.IGE-GTCS patients of thalamus and the abnormal connection effect, which will help us to further understand the origin and mechanism of IGE-GTCS and provide morphological evidence for the study of target therapy for IGE. [Objective]: the routine imaging examination of IGE-GTCS patients can not find the obvious Bureau. The focal structural abnormalities, lack of operation indications, are mainly treated with long-term oral antiepileptic drugs (antiepileptic drugs, AEDs). Long-term and lifelong use of AEDs may cause resistance and liver and kidney function damage. On the other hand, AEDs may cause conscious damage while inhibiting abnormal discharge of neurons. This study uses Morphin based morphological credits. Analysis method, study the IGE-GTCS patients with valproic acid (VPA), explore the effect of VPA on the structure of brain gray matter, and provide neuroimaging evidence for the biological mechanism of its pharmacological action. [materials and methods,]19 names of IGE-GTCS patients who were treated with VPA, were included in this study and 19 healthy volunteers. In this study, high resolution T1 structure data are collected using the German SIEMENS Magnetom Trio 3.0T magnetic resonance. DPARSF software is used to preprocess the high resolution T1 structure data, and the gray structure brain maps of each person are obtained after registration, segmentation, modulation and smoothing by computer algorithm. To compare the gray matter images. According to the correlation analysis between the time of taking medicine and the volume of total gray matter in the whole brain, the sex and age are considered as covariate, and the interference of the results is excluded. In the two groups, the volume of bilateral frontal lobe was lower than that of the normal control group. The area of the increased volume of cerebral gray matter in the patients of the drug group was roughly symmetrical, with bilateral dorsolateral frontal lobes, caudate nucleus and cerebellar hemisphere dominated, and bilateral posterior central back ash. The bilateral thalamus and the putamen were positively correlated with the time of taking medicine, and the posterior lobe of bilateral cerebellum had a negative correlation with the course of the disease. The bilateral thalamus, the putamen, the island leaf were positively correlated with the time of taking medicine, and the bilateral anterior lobe of the cerebellum was negatively correlated with the course of the disease. [Conclusion] [Conclusion] the VBM method was used to find that the volume of gray matter in the brain region of the GTCS patients taking VPA was increased in bilateral dorsolateral frontal lobes, caudate nucleus and cerebellar hemisphere, and the volume of bilateral putamen and thalamus increased with the time of taking medicine, and these brain areas were closely related to consciousness control and exercise control. It is also an important target area for VPA, suggesting that VPA based AEDs may inhibit epileptiform discharge or epileptic clinical seizures, which may delay subclinical injury in the corresponding brain regions.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R742.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前4條
1 黃育斌;張志強(qiáng);盧光明;;原發(fā)全面性癲沲的神經(jīng)放射學(xué)研究進(jìn)展[J];國(guó)際醫(yī)學(xué)放射學(xué)雜志;2014年06期
2 陳煒;王前程;徐春生;;靜息態(tài)腦功能磁共振成像的研究進(jìn)展[J];中醫(yī)藥臨床雜志;2014年11期
3 唐俊婷;洪汛寧;程虹;王崢;陳允杰;俞同福;;阿爾茨海默病腦白質(zhì)的擴(kuò)散張量成像研究:基于纖維束示蹤的空間統(tǒng)計(jì)學(xué)分析結(jié)果[J];臨床放射學(xué)雜志;2014年07期
4 趙博峰;紀(jì)東旭;尹建忠;楊衛(wèi)東;陳旨娟;毓青;蔡莉;;皮質(zhì)發(fā)育畸形術(shù)前定位致灶的靜息態(tài)功能MRI初步研究[J];天津醫(yī)藥;2014年11期
相關(guān)博士學(xué)位論文 前2條
1 肖茜;青少年雙相障礙的腦結(jié)構(gòu)和功能磁共振研究[D];中南大學(xué);2013年
2 湯業(yè)磊;伴中央顳區(qū)棘波兒童良性癲癇腦自發(fā)活動(dòng)的靜息態(tài)功能磁共振研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 劉光耀;原發(fā)全面強(qiáng)直陣攣癲癇全腦比率低頻振幅的靜息態(tài)fMRI研究[D];蘭州大學(xué);2013年
2 李忠明;顳葉癲癇患者計(jì)算認(rèn)知功能的BOLD-fMRI研究[D];福建醫(yī)科大學(xué);2013年
3 江林;未用藥特發(fā)性癲癇靜息態(tài)功能磁共振成像低頻振幅研究[D];遵義醫(yī)學(xué)院;2014年
4 趙博峰;局灶性癲癇的靜息態(tài)功能磁共振成像研究[D];天津醫(yī)科大學(xué);2014年
5 陳琳;內(nèi)側(cè)顳葉癲癇患者靜息態(tài)功能磁共振與記憶功能的相關(guān)性研究[D];福建醫(yī)科大學(xué);2014年
6 王茂雪;癲癇腦默認(rèn)網(wǎng)絡(luò)的靜息態(tài)功能磁共振成像研究[D];南京大學(xué);2012年
7 員銳娟;基于DTI圖論分析建立aMCI的計(jì)算機(jī)輔助診斷模型的研究[D];北京工業(yè)大學(xué);2014年
8 譚雅容;首發(fā)輕中度抑郁癥患者認(rèn)知行為治療前后的大腦功能磁共振研究[D];南京醫(yī)科大學(xué);2014年
,本文編號(hào):1963108
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/1963108.html