帶廣義F-G-M Copula函數(shù)風(fēng)險(xiǎn)模型的分紅策略
[Abstract]:When we study the classical compound Poisson risk model, we generally assume that the claim amount and the claim interval are independent of each other. In fact, however, there may be some dependency between the amount claimed and the time interval between the claim and the claim. This risk model, which breaks the independence between claim amount and claim interval, is a dependent risk model. The dependent risk model has been widely studied since it was proposed. In recent years, scholars have proposed a dependent compound Poisson risk model, in which the joint distribution of claim amount and claim interval satisfies the Copula function. Later, some scholars have studied the Gerber-Shiu function of the dependent compound Poisson risk model with generalized F-G-M Copula function. This kind of risk model is extended from the classical compound Poisson risk model and its dependent structure is based on a generalized Farlie-Gumbel-Morgenstern Copula function. For the dependent compound Poisson risk model with generalized F-G-M Copula function, the discounted penalty Gerber-Shiu function under the barrier dividend strategy is further studied. In this paper, we continue to discuss the dividend strategy of the dependent compound Poisson risk model with generalized F-G-M Copula function. In this paper, we mainly study three dividend strategies of this dependent risk model: obstacle dividend strategy, threshold dividend strategy and hybrid dividend strategy, and obtain the integro-differential equations and boundary conditions which are satisfied by the expected discount dividend function respectively. In addition, under the mixed dividend strategy, we also obtain the integro-differential equations and boundary conditions satisfied by the expected discounted penalty Gerber-Shiu function. The most important result of this paper is that we obtain the differential equation of the expected discounted dividend function for the special case of the exponential distribution of the claim amount. However, when the amount claimed from other distribution, this paper has not obtained a better result. The structure of the article is as follows. The first chapter mainly elaborates the background knowledge of the problems studied in this paper. In the second chapter, the dependent compound Poisson risk model with generalized F-G-M Copula function is introduced in detail. In the third chapter, three kinds of dividend strategies, i.e. obstacle dividend strategy, threshold dividend strategy and hybrid dividend strategy, are described in detail. Under these three dividend strategies, we derive the integro-differential equations and boundary conditions of the expected discounted dividend function. Furthermore, when the claim amount is distributed exponentially, we transform the integro-differential equation satisfied by the expected discounted dividend function into a differential equation, and illustrate how to obtain the concrete expression of the expected discounted dividend function. In chapter 4, the integro-differential equations and boundary conditions of Gerber-Shiu function with mixed dividend strategy are derived.
【學(xué)位授予單位】:曲阜師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:O211.6;F830.91
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王后春;;兩險(xiǎn)種廣義Erlang(2)風(fēng)險(xiǎn)模型的破產(chǎn)概率[J];工程數(shù)學(xué)學(xué)報(bào);2013年05期
2 楊鵬;;邊界分紅策略下跳-擴(kuò)散風(fēng)險(xiǎn)過(guò)程的最優(yōu)投資[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
3 陳倩;何傳江;;帶常數(shù)界絕對(duì)破產(chǎn)時(shí)刻罰金折現(xiàn)函數(shù)期望[J];東北師大學(xué)報(bào)(自然科學(xué)版);2013年04期
4 Xiao Yun MO;Xiang Qun YANG;;Criterion of Semi-Markov Dependent Risk Model[J];Acta Mathematica Sinica(English Series);2014年07期
5 趙金娥;;常紅利邊界下帶干擾的雙復(fù)合Poisson風(fēng)險(xiǎn)模型[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
6 周洪峰;;一類(lèi)保險(xiǎn)風(fēng)險(xiǎn)模型的分紅問(wèn)題[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
7 張媛媛;王文勝;;帶常利率的二維風(fēng)險(xiǎn)模型的破產(chǎn)概率(英文)[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
8 喻軍;李亮;張玉霞;;帶破產(chǎn)赤字補(bǔ)償?shù)腛mega模型最大分紅問(wèn)題[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
9 王姍姍;張春生;;帶有借款利息和稅收的常利率風(fēng)險(xiǎn)模型(英文)[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
10 田飛;王傳玉;張大偉;;復(fù)合Poisson-geometric風(fēng)險(xiǎn)模型下第n次索賠時(shí)的破產(chǎn)概率研究[J];數(shù)學(xué)理論與應(yīng)用;2013年04期
相關(guān)博士學(xué)位論文 前10條
1 彭丹;幾類(lèi)風(fēng)險(xiǎn)模型的分紅問(wèn)題研究[D];中南大學(xué);2013年
2 張帥琪;幾類(lèi)風(fēng)險(xiǎn)模型隨機(jī)控制問(wèn)題的研究[D];中南大學(xué);2012年
3 陳密;保險(xiǎn)風(fēng)險(xiǎn)理論中的破產(chǎn)和分紅問(wèn)題[D];南開(kāi)大學(xué);2013年
4 鄭祥風(fēng);中國(guó)上市公司動(dòng)態(tài)資本結(jié)構(gòu)的理論與實(shí)證研究[D];廈門(mén)大學(xué);2014年
5 莫曉云;受Markov鏈調(diào)控的風(fēng)險(xiǎn)模型研究[D];湖南師范大學(xué);2014年
6 董繼國(guó);逐段決定復(fù)合泊松風(fēng)險(xiǎn)模型的最優(yōu)控制問(wèn)題[D];河北師范大學(xué);2014年
7 宇世航;基于整值時(shí)間序列離散風(fēng)險(xiǎn)模型的漸近推斷[D];吉林大學(xué);2014年
8 于文廣;保險(xiǎn)風(fēng)險(xiǎn)模型的破產(chǎn)理論與分紅策略研究[D];山東大學(xué);2014年
9 趙永霞;若干風(fēng)險(xiǎn)模型中期望折現(xiàn)罰金函數(shù)和最優(yōu)分紅的研究[D];華東師范大學(xué);2014年
10 張媛媛;幾類(lèi)重尾風(fēng)險(xiǎn)模型破產(chǎn)概率的研究[D];華東師范大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 趙昌寶;關(guān)于Copula相依風(fēng)險(xiǎn)模型絕對(duì)破產(chǎn)問(wèn)題的研究[D];湖南師范大學(xué);2013年
2 樂(lè)勝杰;關(guān)于分紅策略下的離散風(fēng)險(xiǎn)模型的研究[D];湖南師范大學(xué);2013年
3 柴軍艦;帶投資組合的一類(lèi)相依風(fēng)險(xiǎn)模型的研究[D];蘭州理工大學(xué);2013年
4 李楊;帶擾動(dòng)常利率對(duì)偶風(fēng)險(xiǎn)模型的分紅問(wèn)題研究[D];曲阜師范大學(xué);2013年
5 劉郁菲;現(xiàn)金儲(chǔ)備遵循雙邊跳躍擴(kuò)散過(guò)程時(shí)的最優(yōu)分紅策略[D];華南理工大學(xué);2013年
6 王青壯;基于交替與延遲交替更新過(guò)程的隨機(jī)模糊破產(chǎn)模型研究[D];華北電力大學(xué);2013年
7 李海賓;一類(lèi)帶閾值分紅策略下相依風(fēng)險(xiǎn)模型的Gerber-Shiu折現(xiàn)罰金函數(shù)[D];中央民族大學(xué);2013年
8 付燕;關(guān)于帶壁分紅策略下對(duì)偶風(fēng)險(xiǎn)模型的研究[D];重慶大學(xué);2013年
9 李平;保費(fèi)隨機(jī)的相依風(fēng)險(xiǎn)模型的破產(chǎn)問(wèn)題研究[D];重慶大學(xué);2013年
10 范希文;鞅在保險(xiǎn)精算中的應(yīng)用[D];重慶理工大學(xué);2013年
,本文編號(hào):2157380
本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/2157380.html