天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 經(jīng)濟(jì)論文 > 投融資論文 >

不同類型商業(yè)銀行不良貸款率影響因素實(shí)證研究

發(fā)布時(shí)間:2018-01-18 05:36

  本文關(guān)鍵詞:不同類型商業(yè)銀行不良貸款率影響因素實(shí)證研究 出處:《云南財(cái)經(jīng)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 不良貸款率 混合效應(yīng)模型 基于正交化技術(shù)的SCAD型固定效應(yīng)選擇 隨機(jī)效應(yīng)檢驗(yàn)


【摘要】:近年我國商業(yè)銀行的不良貸款率持續(xù)攀升,截至2016年第3季度,已連漲19個(gè)季度。對影響商業(yè)銀行不良貸款率的因素進(jìn)行研究,能夠夯實(shí)其經(jīng)營基礎(chǔ),有利于抵御潛在風(fēng)險(xiǎn)。同時(shí),通過對不同類型商業(yè)銀行不良貸款率影響因素的分析,可以為金融監(jiān)管部門決策提供一些參考。為全面地考慮不良貸款率的影響因素,本文選擇含有固定效應(yīng)和隨機(jī)效應(yīng)的混合效應(yīng)模型。由于相對于樣本量而言,初始解釋變量的個(gè)數(shù)較多,故運(yùn)用基于正交化技術(shù)的SCAD型固定效應(yīng)選擇方法進(jìn)行固定效應(yīng)的選擇和估計(jì),并對隨機(jī)效應(yīng)進(jìn)行檢驗(yàn)。由于數(shù)據(jù)不滿足正態(tài)性假設(shè),故進(jìn)行固定效應(yīng)的選擇和估計(jì)以及隨機(jī)效應(yīng)的檢驗(yàn)時(shí),選擇的是不依賴于正態(tài)性假設(shè)的新方法。納入混合效應(yīng)模型的初始自變量,既有銀行風(fēng)險(xiǎn)類指標(biāo),也有宏觀經(jīng)濟(jì)指標(biāo)。實(shí)證結(jié)果表明,不同類型商業(yè)銀行不良貸款率受不同協(xié)變量的影響,同一協(xié)變量對不同類型商業(yè)銀行不良貸款率的影響或正或負(fù)。具體到宏觀經(jīng)濟(jì)指標(biāo),國內(nèi)生產(chǎn)總值對所有類型商業(yè)銀行不良貸款率的影響都是正向的;消費(fèi)者物價(jià)指數(shù)只影響城市商業(yè)銀行、農(nóng)村商業(yè)銀行和外資銀行,且為負(fù)方向;廣義貨幣供應(yīng)量對商業(yè)銀行總體、股份制商業(yè)銀行和外資銀行的影響是正向的,對城市商業(yè)銀行的影響為負(fù);社會(huì)消費(fèi)品零售總額僅從正向影響商業(yè)銀行總體、國有大型商業(yè)銀行和股份制商業(yè)銀行。在所選的三個(gè)銀行風(fēng)險(xiǎn)類指標(biāo)中,撥備覆蓋率對商業(yè)銀行總體、國有大型商業(yè)銀行、股份制商業(yè)銀行和外資銀行均有負(fù)向影響,而核心資本負(fù)債率和流動(dòng)性比率僅對外資銀行起著正向影響。對于隨機(jī)效應(yīng)來說,年度和季節(jié)效應(yīng)對不同類型商業(yè)銀行不良貸款率均影響顯著,說明經(jīng)濟(jì)周期性在不良貸款率影響因素的研究中不容忽視。進(jìn)一步地,為說明年度和季節(jié)效應(yīng)對每一類型商業(yè)銀行的影響差異,根據(jù)相應(yīng)的隨機(jī)效應(yīng)檢驗(yàn)結(jié)果,計(jì)算出了P值,并給出了比較結(jié)論。
[Abstract]:In recent years, the non-performing loan rate of commercial banks in our country has been rising continuously. As of in the third quarter of 2016, the non-performing loan rate of commercial banks has risen for 19 consecutive quarters. The research on the factors affecting the non-performing loan ratio of commercial banks can strengthen the operating foundation of commercial banks. At the same time, through the different types of commercial banks through the impact of non-performing loan ratio factors. In order to comprehensively consider the influence factors of non-performing loan ratio, this paper chooses the mixed effect model with fixed effect and random effect, because of the sample size. The number of initial explanatory variables is large, so the SCAD fixed effect selection method based on orthogonalization technique is used to select and estimate the fixed effect. The random effect is tested. Because the data do not satisfy the hypothesis of normality, the selection and estimation of the fixed effect and the test of the random effect are carried out. We choose a new method which does not depend on the hypothesis of normality. The initial independent variables of the mixed effect model include both bank risk indicators and macroeconomic indicators. The empirical results show that. The non-performing loan ratio of different types of commercial banks is affected by different covariables. The same covariable has a positive or negative effect on the non-performing loan ratio of different types of commercial banks. The impact of GDP on the non-performing loan ratio of all types of commercial banks is positive; The consumer price index only affects urban commercial banks, rural commercial banks and foreign banks, and is negative; The influence of broad money supply on commercial banks, joint-stock commercial banks and foreign banks is positive and negative on urban commercial banks. Total retail sales of consumer goods only positively affect the overall commercial banks, state-owned large commercial banks and joint-stock commercial banks. In the selected three bank risk indicators, the provision coverage of commercial banks as a whole. Large state-owned commercial banks, joint-stock commercial banks and foreign banks have a negative impact, while the core capital debt ratio and liquidity ratio only have a positive impact on foreign banks. The annual and seasonal effects have a significant impact on the non-performing loan rate of different types of commercial banks, indicating that economic periodicity can not be ignored in the study of the factors affecting the non-performing loan rate. In order to explain the difference between the annual and seasonal effects on each type of commercial bank, the P value is calculated according to the results of the random effect test, and the comparative conclusions are given.
【學(xué)位授予單位】:云南財(cái)經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F832.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳佳;;信用風(fēng)險(xiǎn)5C分析法以及對我國商業(yè)銀行的啟示[J];讀天下;2016年15期

2 祁樹鵬;馮艷;李京曉;;經(jīng)濟(jì)周期對我國商業(yè)銀行信貸風(fēng)險(xiǎn)管理的影響分析——基于VAR模型的實(shí)證研究[J];金融監(jiān)管研究;2015年04期

3 姜冉;;商業(yè)銀行不良貸款上升的原因及策略建議[J];經(jīng)濟(jì)師;2014年09期

4 劉妍;;我國商業(yè)銀行不良貸款成因及相關(guān)因素分析[J];系統(tǒng)工程;2014年05期

5 郭耀中;;商業(yè)銀行不良貸款率下降影響因素研究[J];山西財(cái)經(jīng)大學(xué)學(xué)報(bào);2012年S1期

6 梁秋霞;;我國商業(yè)銀行不良貸款影響因素的實(shí)證分析[J];吉林工商學(xué)院學(xué)報(bào);2012年01期

7 郭艷;;商業(yè)銀行防范不良貸款淺析[J];知識(shí)經(jīng)濟(jì);2010年04期

8 謝冰;;商業(yè)銀行不良貸款的宏觀經(jīng)濟(jì)影響因素分析[J];財(cái)經(jīng)理論與實(shí)踐;2009年06期

9 中國工商銀行江蘇省分行課題組;戴春林;劉任捷;蘇敬工;丁玉嵐;;經(jīng)濟(jì)周期對我國商業(yè)銀行信貸經(jīng)營的影響及對策[J];金融論壇;2009年07期

10 李思慧;顏向農(nóng);;商業(yè)銀行不良貸款與宏觀經(jīng)濟(jì)因素相關(guān)性實(shí)證分析[J];時(shí)代金融;2007年08期

相關(guān)碩士學(xué)位論文 前7條

1 肖際冬;內(nèi)蒙古地區(qū)股份制商業(yè)銀行不良貸款成因及化解途徑[D];內(nèi)蒙古大學(xué);2015年

2 牛麗;宏觀經(jīng)濟(jì)因素沖擊對商業(yè)銀行不良貸款率影響的實(shí)證研究[D];上海師范大學(xué);2015年

3 馬振國;新經(jīng)濟(jì)形勢下我國商業(yè)銀行不良貸款的影響因素研究[D];吉林大學(xué);2015年

4 李美芳;中國農(nóng)業(yè)銀行不良貸款率影響因素分析[D];東北農(nóng)業(yè)大學(xué);2013年

5 劉穎;銀行不良貸款影響因素的實(shí)證分析[D];浙江大學(xué);2013年

6 安然;我國銀行不良貸款率宏觀影響因素的實(shí)證研究[D];首都經(jīng)濟(jì)貿(mào)易大學(xué);2012年

7 惠健;商業(yè)銀行信貸風(fēng)險(xiǎn)管理理論與實(shí)踐[D];復(fù)旦大學(xué);2009年



本文編號(hào):1439697

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/1439697.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3003c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com