基于多目標(biāo)遺傳算法的鐵礦石碼頭泊位調(diào)度研究
[Abstract]:Since 2003, China has been the largest import country of iron ore in the world. The long-term large quantity transportation requirements have promoted the development of the specialized logistics chain of iron ore in China, and the coastal ports have accelerated the construction of specialized iron ore wharves. Still can not meet the needs of economic development and iron and steel industry. Therefore, it is of great significance to utilize only the existing resources of the port, not to increase the facilities and equipments of the port, but to optimize the resources, speed up the loading and unloading of ships, improve the utilization ratio of port equipment and reduce the cost of port operation. The thesis takes the berth scheduling of iron ore terminal as the research object. Firstly, from the reality that our country is the largest iron ore importer in the world, this paper analyzes the gap between the iron ore port's unloading capacity and the total import quantity, and draws the significance of the paper's research. According to the present situation of domestic and international research, the research contents and methods of this paper are put forward. Secondly, the related problems of berth scheduling of iron ore terminal are analyzed, the model to be established is simplified, the process of unloading iron ore ship is analyzed, and two optimization objective functions are determined. Considering that different ship types have different berthing fees, it is pointed out that many previous researches have taken the minimum time of ship in port as the target to determine the objective function of the minimum cost of ship in port. The second objective function is to minimize port operation cost. Thirdly, the related knowledge of genetic algorithm is summarized, the principle and flow of basic genetic algorithm are summarized in this paper, and the specific method of realizing multi-objective optimization by genetic algorithm is discussed. Finally, the implementation process of genetic algorithm for berth scheduling of iron ore terminal is designed. Based on the research of sorting problem in this paper, natural number coding is adopted; multi-objective optimization is realized by weight coefficient method; fitness function is obtained by converting objective function; selection operator adopts random selection without retractive residue, Using the two-point crossover method, the mutation operation is transposition mutation; select the relevant control parameters to deal with the constraints; finally, for a specific example, run the genetic algorithm to verify the effectiveness of the algorithm.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:F252;F552;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓駿;孫曉娜;靳志宏;;集裝箱碼頭泊位與岸橋協(xié)調(diào)調(diào)度優(yōu)化[J];大連海事大學(xué)學(xué)報(bào);2008年02期
2 呂顯強(qiáng),張宏偉;集裝箱碼頭分派車(chē)輛的整數(shù)規(guī)劃模型[J];大連水產(chǎn)學(xué)院學(xué)報(bào);2004年02期
3 劉麗景;;遺傳算法與多Agent遺傳算法操作與性能比較[J];電腦知識(shí)與技術(shù);2011年16期
4 孟文君;杜麒棟;;我國(guó)鐵礦石碼頭通過(guò)能力與需求分析[J];中國(guó)港口;2009年10期
5 袁禮海,宋建社,畢義明,薛文通;混合遺傳算法及與標(biāo)準(zhǔn)遺傳算法對(duì)比研究[J];計(jì)算機(jī)工程與應(yīng)用;2003年12期
6 司曉悅,婁成武;從國(guó)際鐵礦石漲價(jià),看中國(guó)鋼鐵產(chǎn)業(yè)可持續(xù)發(fā)展[J];金屬礦山;2005年05期
7 劉動(dòng);;近年我國(guó)進(jìn)口鐵礦石的現(xiàn)狀與分析[J];金屬礦山;2009年01期
8 楊春霞;王諾;;基于多目標(biāo)遺傳算法的集裝箱碼頭泊位—岸橋分配問(wèn)題研究[J];計(jì)算機(jī)應(yīng)用研究;2010年05期
9 童珊;;基于船舶優(yōu)先權(quán)的集裝箱港口泊位分配問(wèn)題[J];交通運(yùn)輸工程與信息學(xué)報(bào);2012年01期
10 張佳運(yùn);盧剛;;集裝箱碼頭連續(xù)泊位動(dòng)態(tài)分配優(yōu)化模型及算法[J];北方交通;2011年04期
相關(guān)博士學(xué)位論文 前1條
1 胡一波;求解約束優(yōu)化問(wèn)題的幾種智能算法[D];西安電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 葉賽男;基于Multi-Agent 的港口調(diào)度系統(tǒng)研究[D];北京交通大學(xué);2011年
2 陳歡;集裝箱場(chǎng)橋調(diào)度及其仿真研究[D];武漢理工大學(xué);2011年
3 候春霞;集裝箱碼頭出口箱堆場(chǎng)空間分配研究[D];大連海事大學(xué);2011年
4 張燕濤;基于遺傳算法的泊位調(diào)度問(wèn)題優(yōu)化研究及仿真[D];武漢理工大學(xué);2005年
5 魏璽杰;基于Agent的后方堆場(chǎng)機(jī)械調(diào)度模擬建模研究[D];大連海事大學(xué);2007年
6 姚夏莉;礦石碼頭裝卸工藝系統(tǒng)設(shè)備配置仿真優(yōu)化[D];大連理工大學(xué);2007年
7 黃鑫樂(lè);基于遺傳算法的鐵礦石碼頭泊位配置仿真優(yōu)化方法的應(yīng)用研究[D];上海海事大學(xué);2007年
8 代麗利;基于廣義遺傳算法的泊位分配問(wèn)題優(yōu)化研究[D];大連海事大學(xué);2008年
9 石春玲;港口作業(yè)調(diào)度的算法設(shè)計(jì)與模型研究[D];山東科技大學(xué);2008年
10 柴志剛;集裝箱碼頭泊位調(diào)度多目標(biāo)優(yōu)化方法研究[D];大連海事大學(xué);2009年
,本文編號(hào):2125879
本文鏈接:http://sikaile.net/jingjilunwen/jtysjj/2125879.html