中國兒童數(shù)字能力的發(fā)展
本文選題:數(shù)字能力的發(fā)展 + 基數(shù)原則��; 參考:《湖南大學(xué)》2009年碩士論文
【摘要】: 本學(xué)位論文基于調(diào)查、觀察和跟蹤性手段獲取語料,并對其進行統(tǒng)計分析,旨在探討中國兒童早期數(shù)數(shù)能力的發(fā)展。具體包括何時掌握基數(shù)原則,何時出現(xiàn)數(shù)字直覺,何時開始采用數(shù)數(shù)的方法來代替直覺回答“共計多少”的問題;并進一步探討了各階段兒童可數(shù)數(shù)目、給予數(shù)目、數(shù)字直覺的最大值及三者間的關(guān)系。 其次通過對量詞的調(diào)查研究發(fā)現(xiàn)學(xué)習(xí)量詞有助于兒童掌握基數(shù)原則,從而幫助他們數(shù)數(shù)能力的發(fā)展。最后長期跟蹤的個案研究數(shù)據(jù)也證實了此假設(shè)。前兩章綜述兒童數(shù)數(shù)能力的發(fā)展理論形成歷史,、兩大主要理論流派及國際上這方面的熱點話題,并提出此論文研究目的。 第三章通過指定數(shù)字輸入實驗,指定數(shù)字輸出實驗及數(shù)字直覺測試,結(jié)果表明:1)兒童在三至四歲之間,大部分已掌握基數(shù)原則,四歲后幾乎所有兒童都能掌握此原則;2)兒童最早采用數(shù)字直覺回答“共計多少”的問題,三歲開始運用數(shù)數(shù)的方法來解決此類問題;3)兒童數(shù)字能力的發(fā)展隨著年齡的增大而增強,四至四歲半這組兒童結(jié)果最佳,各組三次實驗數(shù)據(jù)之間存在密切聯(lián)系。研究還表明,2歲半至4歲半的中國南方兒童中,男女性別在數(shù)數(shù)能力上并無顯著差異。 第四章對新鄉(xiāng)兩所幼兒園不同年齡段的294位被試學(xué)習(xí)量詞的情況作了深入研究,總結(jié)出量詞的學(xué)習(xí)有助于兒童掌握基數(shù)原則,并加速他們數(shù)字能力的發(fā)展。 第五章采用被試YCM兩歲至四歲半的跟蹤性數(shù)據(jù)檢驗前面所做假設(shè)是否正確,進一步證實了三至四歲是兒童數(shù)數(shù)能力發(fā)展的關(guān)鍵期,量詞的學(xué)習(xí)有助于兒童基數(shù)原則的掌握。 論文的研究結(jié)論為:隨著兒童年齡的增長,數(shù)數(shù)能力的發(fā)展越來越快。超越一半的中國兒童三歲后已掌握基數(shù)原則,絕大多數(shù)兒童四歲后已熟練運用。量詞的學(xué)習(xí)促進了中國兒童數(shù)數(shù)能力的發(fā)展。但基數(shù)原則的掌握是否是“先天論”與“后天論”的判斷標準,目前仍很難下結(jié)論,這是因為雖然已有一些合理的推理,但迄今為止我們?nèi)詿o法精確描述兒童掌握基數(shù)原則具體過程。因此我們?nèi)孕枥^續(xù)這方面的進一步研究。
[Abstract]:This dissertation is based on the investigation, observation and tracking methods to obtain and analyze the language data. The purpose of this thesis is to explore the development of Chinese children's early numeration ability. These include when to master the cardinality principle, when digital intuition appears, when the number method is used instead of intuition to answer the question of "how much total"; and how many children can be counted and given at all stages, Secondly, through the investigation of quantifiers, it is found that learning quantifiers is helpful for children to grasp the cardinality principle and thus help them to develop their numeration ability. Case study data from the final long-term follow-up also confirm this hypothesis. The first two chapters summarize the history of the development theory of children's numeration ability, the two major theoretical schools and the hot topics in this field in the world, and put forward the purpose of this paper. The assigned number output experiment and the number intuition test show that most of the children between the ages of three and four have mastered the cardinal principle. After the age of four, almost all children can master this principle. (2) Children are the first to use digital intuition to answer the question "how much?" The development of children's digital ability increases with the increase of age. The results of the four to four-and-a-half years old children are the best, and there is a close relationship between the three experimental data of each group. The study also shows that there is no significant difference between male and female in numeration ability among children in southern China aged from two and a half to four and a half years old. Chapter four makes an in-depth study on the learning of quantifiers among 294 participants of different ages in two kindergartens in Xinxiang. It is concluded that the learning of quantifiers helps children to master the cardinality principle and accelerate the development of their numerical ability. Chapter 5 uses the tracking data of YCM from two to four and a half years old to test whether the previous assumptions are correct. It is further proved that three to four years old is the key period for the development of children's numeration ability, and the learning of quantifiers is helpful to master the principle of children's cardinality. The conclusion of this paper is as follows: with the increase of children's age, the ability of counting develops more and more rapidly. More than half of Chinese children have mastered the cardinal principle after the age of three. The study of quantifiers has promoted the development of Chinese children's numeration ability. However, it is still difficult to draw a conclusion as to whether or not the cardinality principle is the criterion of "innate theory" and "acquired theory", because although some reasonable reasoning has been made, But so far, we still can not accurately describe the process of children mastering the cardinality principle. Therefore, we still need to continue the further study in this area.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2009
【分類號】:G613
【參考文獻】
相關(guān)期刊論文 前10條
1 丁凌云;兒童語言中的量詞[J];安徽師范大學(xué)學(xué)報(人文社會科學(xué)版);1999年01期
2 張誼生;從量詞到助詞——量詞“個”語法化過程的個案分析[J];當代語言學(xué);2003年03期
3 王學(xué)英;楊天資;;淺淡漢語量詞的比較與翻譯[J];大學(xué)英語(學(xué)術(shù)版);2008年01期
4 蔣宗霞;現(xiàn)代漢語量詞的分類及其發(fā)展趨勢[J];廣西民族學(xué)院學(xué)報(哲學(xué)社會科學(xué)版);2000年05期
5 侯杰;羅亦君;;漢英名詞數(shù)量表達對比分析[J];江漢石油職工大學(xué)學(xué)報;2008年01期
6 黃進;兒童語言中個體量詞“個”的運用及其他[J];南京廣播電視大學(xué)學(xué)報;2003年03期
7 方格,田學(xué)紅,畢鴻燕;幼兒對數(shù)的認知及其策略[J];心理學(xué)報;2001年01期
8 張華,龐麗娟,陶沙,陳瑤,董奇;兒童早期數(shù)學(xué)認知能力的結(jié)構(gòu)及其特點[J];心理學(xué)報;2003年06期
9 宣賓,張達人;輸出方式和輸出時間對數(shù)字廣度的影響[J];心理學(xué)報;2004年03期
10 ;為什么量詞多用“個”[J];語文建設(shè);1996年01期
,本文編號:1999805
本文鏈接:http://sikaile.net/jiaoyulunwen/yejy/1999805.html