最近發(fā)展區(qū)理論指導(dǎo)下的高中數(shù)列教學(xué)探究
本文選題:最近發(fā)展區(qū) + 現(xiàn)實發(fā)展水平; 參考:《山東師范大學(xué)》2015年碩士論文
【摘要】:20世紀(jì)30年代,前蘇聯(lián)教育學(xué)家維果茨基創(chuàng)造性的提出了“最近發(fā)展區(qū)”理論,掀起了一股研究熱潮。本文主要研究了三方面的內(nèi)容:第一,對“最近發(fā)展區(qū)”理論的發(fā)展進(jìn)行了闡述;第二,對如何確定和進(jìn)入“最近發(fā)展區(qū)”理論進(jìn)行了研究;第三,將“最近發(fā)展區(qū)”理論指導(dǎo)高中數(shù)列教學(xué)進(jìn)行了探究。本論文主要包括以下要點: 一、對“最近發(fā)展區(qū)”理論產(chǎn)生的背景和國內(nèi)外研究現(xiàn)狀進(jìn)行了闡述,結(jié)合新課程理念,介紹了高中數(shù)列內(nèi)容在數(shù)學(xué)課程中的重要地位以及存在的問題,論述了將“最近發(fā)展區(qū)”理論應(yīng)用到數(shù)列教學(xué)中的重要意義。 二、詳細(xì)詮釋了“最近發(fā)展區(qū)”理論,首先要確定學(xué)生的兩種發(fā)展水平——現(xiàn)實發(fā)展水平和潛在發(fā)展水平,這種水平之間的區(qū)域便是“最近發(fā)展區(qū)”。最近發(fā)展區(qū)是因人而異并且動態(tài)變化的發(fā)展過程,該理論揭示了教學(xué)、學(xué)習(xí)與發(fā)展之間辯證統(tǒng)一的關(guān)系,教學(xué)應(yīng)走在發(fā)展的前面,抓住教學(xué)的最佳關(guān)鍵期,幫助學(xué)生將潛在發(fā)展水平轉(zhuǎn)化成為現(xiàn)實發(fā)展水平,并創(chuàng)造新的最近發(fā)展區(qū),在這個循環(huán)的過程中,注意對學(xué)生進(jìn)行動態(tài)的評估,使學(xué)生得到了更好的發(fā)展。 三、根據(jù)“最近發(fā)展區(qū)”理論確定的原則和方法,研究出高中數(shù)列教學(xué)中進(jìn)入“最近發(fā)展區(qū)”的方法。首先,在最近發(fā)展區(qū)內(nèi),通過以舊引新、激發(fā)興趣、類比引入、設(shè)置疑問、由易到難、由特殊到一般等方法設(shè)計恰當(dāng)?shù)慕虒W(xué)情境;其次,通過設(shè)置支架,幫助學(xué)生進(jìn)入最近發(fā)展區(qū);再次,聯(lián)系生活實際,在最近發(fā)展區(qū)中培養(yǎng)學(xué)生的應(yīng)用意識;然后,合理利用最近發(fā)展區(qū),使學(xué)生的認(rèn)知結(jié)構(gòu)合理化;最后,科學(xué)設(shè)置課后思考題,創(chuàng)設(shè)最近發(fā)展區(qū)。 四、結(jié)合“最近發(fā)展區(qū)”理論確定的方法,對泰安市東平明湖中學(xué)的高二級部兩個班級進(jìn)行了教學(xué)探究實驗。首先,結(jié)合與數(shù)列相關(guān)的數(shù)學(xué)思想、方法以及相關(guān)聯(lián)的數(shù)學(xué)知識,編制前測試卷,根據(jù)測試結(jié)果來檢測兩個班級的現(xiàn)實情況,劃分實驗班和對照班,對實驗班實施“最近發(fā)展區(qū)”理論指導(dǎo)下的教學(xué)探究;其次,根據(jù)前測試卷的不同考察維度,結(jié)合測試結(jié)果分析實驗班學(xué)生的現(xiàn)實發(fā)展水平,并預(yù)測學(xué)生的潛在發(fā)展水平,從而獲得學(xué)生的最近發(fā)展區(qū);再次,在學(xué)生的最近發(fā)展區(qū)內(nèi)進(jìn)行數(shù)列教學(xué)探究,理論指導(dǎo)貫穿整個數(shù)學(xué)教學(xué)環(huán)節(jié);最后,在等差數(shù)列教學(xué)和等比數(shù)列教學(xué)結(jié)束之后,編寫試題對兩個班學(xué)生進(jìn)行測試,將三次測試結(jié)果進(jìn)行統(tǒng)計分析。 五、統(tǒng)計分析三次測試結(jié)果數(shù)據(jù),對比兩個班的前后三次數(shù)據(jù),結(jié)合課堂教學(xué)過程和授課時間,研究發(fā)現(xiàn):將“最近發(fā)展區(qū)”理論應(yīng)用到數(shù)列教學(xué)的探究中,對數(shù)列教學(xué)有顯著的成效,教學(xué)不僅可以縮短授課的時間,而且學(xué)生的主動性得到提高,學(xué)習(xí)興趣大大增強(qiáng),學(xué)習(xí)潛能也得到了開發(fā),認(rèn)知發(fā)展水平循序漸進(jìn)的得到更大的提高,學(xué)生整體成績得到了提高,,特別是班級優(yōu)等生和中等生進(jìn)步比較大。 六、根據(jù)“最近發(fā)展區(qū)”理論在數(shù)學(xué)教學(xué)過程中的實踐,我從教學(xué)觀、教師觀、學(xué)生觀、教學(xué)評價觀等方面獲得深刻啟示,并總結(jié)了論文存在的不足之處。
[Abstract]:In 1930s, the former Soviet Union educator Vygotsky creative "nearest development area" theory, has raised a research upsurge. This paper mainly studies three aspects: first, the "nearest development area" theory are described; second, how to determine and enter the "nearest development area" theory the study; third, the "nearest development area" theory to guide teaching series in high school were studied. This paper mainly includes the following points:
A, the "nearest development area" theoretical background and research status at home and abroad were introduced, combined with the new curriculum, introduces the important position in the series in high school mathematics curriculum in the content and existing problems, discusses the "recent developments" theory is applied to the important series of teaching.
Two, a detailed interpretation of the "nearest development area" theory, first of all to determine the development level of two students -- the real level of development and potential development level, this level is the area between the "recent developments". Recent development area is the development process and the dynamic changes of It differs from man to man., the theory reveals the dialectical unity of the teaching. The relationship between learning and development, teaching should go ahead of development, seize the best critical period of teaching, students will help the potential level of development into the real level of development, and create a new development area recently, in the circulation process, pay attention to the dynamic evaluation of students, make students get a better development.
Three, according to the principle and method of zone of proximal development theory to determine the Research Series in high school teaching into the "nearest development area" method. First of all, in the recent development in the region, with new and old leads to stimulate interest in the analogy is introduced, set questions, from easy to difficult, from special to general design methods appropriate teaching situation; secondly, by setting the support, help students enter the nearest development area; again, contact the actual life in the recent development, to develop students awareness of the application area; then, the rational use of recent developments in the area, the students' cognitive structure rationalization; finally, set up a scientific thinking after class, the creation of recent development area.
Four, combined with the method of "zone of proximal development theory to determine the two classes of Tai'an city Dongping lake middle school grade two were teaching experiments. Firstly, combining the mathematics thought and series, the method of mathematical knowledge and the associated, before the preparation of test according to the test results to detect the reality two classes, divided into experimental class and control class, the implementation of" exploring the theory of zone of proximal development under the guidance of the teaching of the experimental class; secondly, according to the test of different observation dimensions of volume, according to the test results the reality of the development level of the experimental class students, and predict the potential development level of students, so as to obtain the recent development area students; again, in their ZPD of series teaching research, theoretical guidance throughout the mathematical teaching; finally, after the end of arithmetic progression and geometric progression of teaching teaching, compiling Two classes of students were tested by writing the test, and the results of the three tests were statistically analyzed.
Five, statistical analysis the three test data before and after comparison of two classes of three data, combined with classroom teaching process and teaching time, the study found that: "recent developments" theory is applied to explore the sequence of teaching, have positive effect on mathematics teaching and learning, teaching can not only shorten the teaching time, and active the students' interest in learning is improved, greatly enhance the learning potential has been developed, the level of cognitive development gradually gets better, and overall student achievement has been improved, particularly the larger class of top students and secondary students progress.
Six, according to the practice of "the theory of proximal development" in mathematics teaching process, I got deep inspiration from teaching concept, teacher's view, student's view and teaching evaluation view, and summarized the shortcomings of this paper.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G633.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱智賢;關(guān)于思惟心理研究的幾個基本問題[J];北京師范大學(xué)學(xué)報;1984年01期
2 徐美娜;;“最近發(fā)展區(qū)”理論及對教育的影響與啟示[J];教育與教學(xué)研究;2010年05期
3 李理;趙琴;;“最近發(fā)展區(qū)”理論在化學(xué)新課程教學(xué)中的應(yīng)用[J];當(dāng)代教育論壇(學(xué)科教育研究);2007年07期
4 麻彥坤;;維果茨基對現(xiàn)代西方心理學(xué)的影響[J];華東師范大學(xué)學(xué)報(教育科學(xué)版);2006年03期
5 鄒曉燕;“維果茨基熱”及其對中國教育改革的啟示[J];遼寧師范大學(xué)學(xué)報;2001年04期
6 陳丹青;;關(guān)于維果茨基最近發(fā)展區(qū)理論在實際應(yīng)用中的幾點思考[J];科教導(dǎo)刊(中旬刊);2012年12期
7 鄭強(qiáng);;數(shù)學(xué)素養(yǎng)與數(shù)學(xué)教學(xué)[J];山東教育學(xué)院學(xué)報;2006年05期
8 胡東偉;;找準(zhǔn)學(xué)生“最近發(fā)展區(qū)" 搭好教學(xué)“腳手架"——關(guān)于初中科學(xué)課程教學(xué)設(shè)計的探析[J];教育探索;2006年05期
9 陳靜;麻彥坤;;最近發(fā)展區(qū)理論對學(xué)校德育工作的啟示[J];教育探索;2007年02期
10 麻彥坤,葉浩生;“維果茨基現(xiàn)象”分析:基于西方心理學(xué)發(fā)展的思考[J];社會科學(xué);2005年10期
本文編號:1758817
本文鏈接:http://sikaile.net/jiaoyulunwen/chuzhongjiaoyu/1758817.html