基于煤種摻燒模式的鍋爐燃燒預(yù)測模型及應(yīng)用
本文選題:燃燒NO_x濃度 切入點(diǎn):飛灰含碳量 出處:《浙江大學(xué)》2017年碩士論文
【摘要】:我國能源消費(fèi)結(jié)構(gòu)在由煤為主導(dǎo)向多元化發(fā)展,但煤炭依然占據(jù)著主導(dǎo)地位,而由煤炭燃燒帶來的環(huán)境污染日益受到重視,尤其是燃煤電廠產(chǎn)生的固、液、氣污染。在保證安全和環(huán)保的前提下提高經(jīng)濟(jì)性是燃煤電廠的目標(biāo),因此合理的優(yōu)化運(yùn)行方式、煤種摻燒方案以及煤種采購顯得異常重要。對鍋爐燃燒情況的預(yù)判可以為此提供參考。本文基于電廠實(shí)際運(yùn)行數(shù)據(jù)和入爐煤煤質(zhì)信息,綜合考慮了磨煤機(jī)組合方式、配風(fēng)方式等運(yùn)行參數(shù)和煤質(zhì)信息,利用支持向量機(jī)建立起鍋爐燃燒NO_x濃度、飛灰含碳量和排煙溫度的預(yù)測模型。將遺傳算法和交叉驗(yàn)證法結(jié)合對預(yù)測模型的參數(shù)進(jìn)行優(yōu)化與選擇,建立起的模型有良好的學(xué)習(xí)和泛化能力。從校驗(yàn)樣本中選取部分工況作為基礎(chǔ)工況,在其他條件不變的情況下,研究在選定的這些工況下,單因素如:氧量、燃盡風(fēng)率、煤種及摻配比例等,對鍋爐NO_x濃度、飛灰含碳量及排煙溫度的影響。對這些選定的工況研究結(jié)果表明氧量、燃盡風(fēng)率、煤種及摻配比例對NO_x有較大的影響,而飛灰含碳量和排煙溫度與氧量、燃盡風(fēng)率及煤種密切相關(guān)。根據(jù)模型的研究結(jié)果,計(jì)算各個(gè)選定工況的煤耗,結(jié)合實(shí)際煤炭價(jià)格、液氨及石灰石粉價(jià)格計(jì)算氧量、燃盡風(fēng)率、煤種、摻配比例等對發(fā)電成本、環(huán)保成本及綜合成本的影響。分析結(jié)果顯示在本文選定的這些工況下,隨著氧量增加發(fā)電成本與環(huán)保成本均增加,燃盡風(fēng)率的增加會(huì)使得發(fā)電成本上升但環(huán)保成本下降,綜合成本表現(xiàn)為上升,煤種對發(fā)電成本和環(huán)保成本影響巨大,摻燒高硫煤和蒙煤有利于提高經(jīng)濟(jì)性。
[Abstract]:China's energy consumption structure is developing from coal to diversification, but coal still occupies a dominant position, and environmental pollution caused by coal combustion has been paid more and more attention, especially the solid and liquid produced by coal-fired power plants. Gas pollution. Improving economic efficiency under the premise of ensuring safety and environmental protection is the goal of coal-fired power plants. It is very important to mix coal with coal and to purchase coal. The prediction of boiler combustion can provide reference for this. Based on the actual operation data of power plant and coal quality information, the combined mode of pulverizer is considered in this paper. The NO_x concentration of boiler combustion was established by using support vector machine and operation parameters such as air distribution mode and coal quality information. The prediction model of carbon content in fly ash and smoke exhaust temperature. Genetic algorithm and cross validation method are combined to optimize and select the parameters of the prediction model. The model has good learning and generalization ability. Selected part of the check sample as the basic operating conditions, in the case of other conditions unchanged, under these conditions, the single factor such as oxygen, burnout rate, The effects of coal type and blending ratio on NO_x concentration, carbon content in fly ash and exhaust gas temperature of boiler are studied. The results show that oxygen content, burnout rate, coal type and blending ratio have great influence on NO_x. However, the carbon content of fly ash and the exhaust temperature are closely related to oxygen content, burnout air rate and coal type. According to the results of the model, the coal consumption of each selected working condition is calculated, and the oxygen content and burnout rate are calculated according to the actual coal price, the price of liquid ammonia and limestone powder. The effects of coal and blending ratio on the cost of power generation, environmental protection and comprehensive cost. The results show that the cost of power generation and the cost of environmental protection increase with the increase of oxygen under these selected conditions. The increase of burnout rate will increase the cost of power generation but decrease the cost of environmental protection, and the comprehensive cost will be increased, and the coal will have a great impact on the cost of power generation and environmental protection. Mixing coal with high sulfur and coal will improve the economy.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM621.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周志成;楊志超;楊成順;陶風(fēng)波;李建生;;基于改進(jìn)RADAG-SVM的電力變壓器故障診斷[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
2 史文崢;楊萌萌;張緒輝;李水清;姚強(qiáng);;燃煤電廠超低排放技術(shù)路線與協(xié)同脫除[J];中國電機(jī)工程學(xué)報(bào);2016年16期
3 張軍;鄭成航;張涌新;吳國潮;朱松強(qiáng);孟煒;高翔;岑可法;;某1000MW燃煤機(jī)組超低排放電廠煙氣污染物排放測試及其特性分析[J];中國電機(jī)工程學(xué)報(bào);2016年05期
4 張伯興;呂華兵;;600MW鍋爐氮氧化物整體控制實(shí)踐[J];中國電力;2016年02期
5 仲亞飛;韋紅旗;姚衛(wèi)剛;陳經(jīng)緯;;基于粒子群算法和支持向量機(jī)的鍋爐排煙溫度建模[J];熱力發(fā)電;2016年01期
6 崔超;楊婷婷;劉吉臻;呂游;劉濤;;基于BP網(wǎng)絡(luò)變量選擇與LSSVM結(jié)合的鍋爐脫硝經(jīng)濟(jì)性建模[J];中國電機(jī)工程學(xué)報(bào);2015年24期
7 趙永椿;馬斯鳴;楊建平;張軍營;鄭楚光;;燃煤電廠污染物超凈排放的發(fā)展及現(xiàn)狀[J];煤炭學(xué)報(bào);2015年11期
8 高正陽;吉碩;呂少昆;趙航;楊朋飛;孟欣欣;廖永進(jìn);;燃盡風(fēng)對鍋爐燃燒及脫硝經(jīng)濟(jì)性的影響[J];熱力發(fā)電;2015年09期
9 張宇;周連升;王桂林;韋云國;劉濤;賀欣;;減少污染物排放成本的配煤優(yōu)化模型[J];熱力發(fā)電;2015年07期
10 鐘用祿;李海山;劉發(fā)圣;譚鵬;張尚志;張成;;基于PCA-SVR的燃煤鍋爐NO_x排放預(yù)測[J];熱力發(fā)電;2015年01期
,本文編號:1662946
本文鏈接:http://sikaile.net/guanlilunwen/chengbenguanlilunwen/1662946.html