中學(xué)生數(shù)學(xué)問(wèn)題解決能力影響因素研究
本文選題:問(wèn)題解決 + 數(shù)學(xué)問(wèn)題解決能力。 參考:《延邊大學(xué)》2017年碩士論文
【摘要】:如何培養(yǎng)學(xué)生的數(shù)學(xué)問(wèn)題解決能力一直都是世界各國(guó)教育課程的重要內(nèi)容之一。從二十世紀(jì)八十年代開(kāi)始,在國(guó)際數(shù)學(xué)教育中,問(wèn)題解決已經(jīng)成為了最為熱點(diǎn)的話題。1980年的4月,在美國(guó)數(shù)學(xué)教師協(xié)會(huì)上,發(fā)布了一份名為《有關(guān)行動(dòng)的議程》公文,在這一文件中對(duì)問(wèn)題解決有了明確的說(shuō)明:數(shù)學(xué)課程及課堂教學(xué)的組織應(yīng)以問(wèn)題解決為核心。由此可見(jiàn),對(duì)數(shù)學(xué)問(wèn)題解決的相關(guān)研究不僅是數(shù)學(xué)發(fā)展歷程的指引也是時(shí)代的需要。從二十一世紀(jì)開(kāi)始,在國(guó)外的數(shù)學(xué)課程標(biāo)準(zhǔn)中,問(wèn)題解決已經(jīng)列入了重點(diǎn)內(nèi)容,我國(guó)也將培養(yǎng)學(xué)生的分析和解決問(wèn)題能力劃入了課程改革的重要位置。雖然近年來(lái),我國(guó)對(duì)數(shù)學(xué)問(wèn)題解決的研究取得了很大的進(jìn)步,但由于我國(guó)研究起步較晚,與其他國(guó)家相比較還是存在一定差距。在數(shù)學(xué)課堂教學(xué)中我們發(fā)現(xiàn),很多學(xué)生雖然對(duì)數(shù)學(xué)相關(guān)知識(shí)的學(xué)習(xí)很容易理解,但卻對(duì)一些解決生活中的實(shí)際問(wèn)題相關(guān)練習(xí)題不會(huì)解答,這些學(xué)生并不是不會(huì)相關(guān)的數(shù)學(xué)知識(shí),而是數(shù)學(xué)問(wèn)題解決能力較為薄弱,在當(dāng)今社會(huì),學(xué)生這些問(wèn)題的不斷涌現(xiàn),無(wú)疑會(huì)對(duì)學(xué)生的素質(zhì)教育產(chǎn)生深遠(yuǎn)的影響。這就要我們從學(xué)生的角度出發(fā),對(duì)他們?cè)诮鉀Q問(wèn)題中所遇到困難的成因進(jìn)行剖析,從中找到影響數(shù)學(xué)問(wèn)題解決能力的因素有哪些,進(jìn)而幫助學(xué)生提高他們的問(wèn)題解決能力。本文主要采用文獻(xiàn)法和個(gè)案研究法,首先對(duì)數(shù)學(xué)問(wèn)題解決的相關(guān)背景進(jìn)行回顧,并對(duì)前人的研究成果進(jìn)行綜述,然后對(duì)相關(guān)的概念進(jìn)行闡述,根據(jù)相關(guān)理論基礎(chǔ),通過(guò)學(xué)生對(duì)幾類(lèi)結(jié)構(gòu)不良的數(shù)學(xué)問(wèn)題的解答進(jìn)行整理分類(lèi),對(duì)產(chǎn)生錯(cuò)誤的原因進(jìn)行剖析,得出影響數(shù)學(xué)問(wèn)題解決能力的因素如下:(1)問(wèn)題表征;(2)認(rèn)知結(jié)構(gòu);(3)思維定勢(shì);(4)元認(rèn)知;(5)興趣與動(dòng)機(jī);(6)個(gè)性差異;(7)師生之間的互動(dòng)。根據(jù)影響因素探索能提高課堂教學(xué)效果的方法,進(jìn)一步提出培養(yǎng)學(xué)生數(shù)學(xué)問(wèn)題解決能力的教學(xué)策略:(1)引導(dǎo)學(xué)生把握表征取向,提升學(xué)生問(wèn)題表征能力;(2)充分關(guān)注學(xué)生學(xué)的規(guī)律,構(gòu)建良好的認(rèn)知結(jié)構(gòu);(3)利用思維定勢(shì),促進(jìn)知識(shí)正向遷移;(4)培養(yǎng)學(xué)生反思和監(jiān)控習(xí)慣,開(kāi)發(fā)學(xué)生數(shù)學(xué)元認(rèn)知水平;(5)激發(fā)學(xué)習(xí)興趣,培養(yǎng)學(xué)生的求知欲望;(6)關(guān)注學(xué)生個(gè)性差異,實(shí)現(xiàn)教育公平;(7)創(chuàng)造師生互動(dòng)環(huán)境,調(diào)動(dòng)學(xué)生積極性。
[Abstract]:How to cultivate students' ability of solving mathematical problems is one of the important contents of educational curriculum all over the world. Since the 1980s, problem-solving has become one of the hottest topics in international mathematics education. In April 1980, the American Association of Mathematics Teachers published a document called the agenda for Action. In this document, there is a clear explanation for problem-solving: mathematics curriculum and classroom teaching should be organized with problem-solving as the core. Therefore, the research on mathematical problem solving is not only the guidance of mathematics development process, but also the need of the times. Since the 21 century, problem solving has been included in the mathematics curriculum standards of foreign countries, and the training of students' ability to analyze and solve problems has been put into the important position of curriculum reform in China. Although great progress has been made in the study of mathematical problem solving in China in recent years, there is still a certain gap between China and other countries because of the late start of the research in China. In the mathematics classroom teaching, we found that although many students are easy to understand the mathematics related knowledge, but they can not solve some practical problems related to solving the practical problems in life, these students are not the mathematics knowledge that is not not relevant. But the mathematics problem solving ability is relatively weak, in the present society, the student these questions unceasingly emerge, will undoubtedly have the profound influence to the student's quality education. From the point of view of students, we should analyze the causes of the difficulties they encounter in solving problems, find out the factors that affect the ability of solving mathematical problems, and then help students improve their problem-solving ability. This article mainly uses the literature method and the case study method, first carries on the review to the mathematics question solution correlation background, and carries on the summary to the predecessor's research result, then carries on the elaboration to the related concept, according to the correlation theory foundation, By sorting out and classifying the answers to several kinds of ill-structured mathematical problems, the causes of errors are analyzed. The factors influencing mathematical problem-solving ability are as follows: 1) problem representation (2) cognitive structure / 3) metacognition / metacognition (5) interest and motivation / (6) personality difference)) interaction between teachers and students. According to the influencing factors, this paper explores the methods that can improve the classroom teaching effect, and further puts forward the teaching strategy of cultivating students' mathematical problem-solving ability: 1) to guide students to grasp the orientation of representation, and to enhance the students' ability to represent problems. (2) to pay full attention to the law of students' learning. To construct a good cognitive structure and make use of the thinking pattern, to promote the positive transfer of knowledge (4) to cultivate students' habit of reflection and monitoring, to develop the students' level of mathematical metacognition (5) to stimulate their interest in learning and to cultivate their desire to seek knowledge (6) to pay attention to the difference of students' personality. The realization of educational fairness is to create an interactive environment between teachers and students and to arouse students' enthusiasm.
【學(xué)位授予單位】:延邊大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:G633.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 盧英;;小學(xué)數(shù)學(xué)解決問(wèn)題的教學(xué)策略研究[J];中國(guó)校外教育;2012年10期
2 袁一鳴;趙繼源;周曉穎;;初中數(shù)學(xué)思維定勢(shì)的調(diào)查與分析[J];當(dāng)代教育論壇(教學(xué)研究);2011年12期
3 姚志華;李碧榮;湯鑫;;中學(xué)優(yōu)困生數(shù)學(xué)問(wèn)題表征多樣性的差異實(shí)驗(yàn)研究[J];當(dāng)代教育論壇(教學(xué)研究);2011年09期
4 諸鳳;;小學(xué)數(shù)學(xué)“問(wèn)題解決”能力的培養(yǎng)[J];教育實(shí)踐與研究(A);2011年03期
5 孫新;;課堂教學(xué)中師生互動(dòng)存在的問(wèn)題及解決策略[J];學(xué)理論;2010年36期
6 周小川;;美國(guó)數(shù)學(xué)課程標(biāo)準(zhǔn)中“問(wèn)題解決”的變化及啟示[J];課程.教材.教法;2007年04期
7 殷霞;;初中生數(shù)學(xué)問(wèn)題解決觀的現(xiàn)狀及其分析[J];無(wú)錫教育學(xué)院學(xué)報(bào);2006年03期
8 王兄;數(shù)學(xué)問(wèn)題解決研究綜述[J];廣西師范大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2000年S2期
相關(guān)碩士學(xué)位論文 前10條
1 韓偉;激發(fā)小學(xué)生數(shù)學(xué)學(xué)習(xí)興趣的實(shí)踐研究[D];魯東大學(xué);2014年
2 龐惠琳;小學(xué)數(shù)學(xué)問(wèn)題解決教學(xué)的課例研究[D];東北師范大學(xué);2013年
3 彭勇;初中數(shù)學(xué)“問(wèn)題解決”教學(xué)的實(shí)踐與研究[D];廣州大學(xué);2012年
4 劉先茹;高中數(shù)學(xué)問(wèn)題解決及其教學(xué)研究[D];東北師范大學(xué);2012年
5 陳會(huì);小學(xué)生數(shù)學(xué)問(wèn)題解決能力現(xiàn)狀的研究[D];東北師范大學(xué);2012年
6 孫煥彥;建構(gòu)主義視角下優(yōu)化數(shù)學(xué)認(rèn)知結(jié)構(gòu)的對(duì)策研究[D];東北大學(xué);2012年
7 江乙臨;基于問(wèn)題解決的高中數(shù)學(xué)課堂教學(xué)設(shè)計(jì)研究[D];上海師范大學(xué);2010年
8 降偉巖;小學(xué)數(shù)學(xué)解決問(wèn)題教學(xué)的現(xiàn)狀及策略[D];東北師范大學(xué);2010年
9 王婉芳;中職學(xué)生數(shù)學(xué)學(xué)習(xí)動(dòng)機(jī)激發(fā)策略的研究[D];上海師范大學(xué);2009年
10 郭珍貞;初中數(shù)學(xué)問(wèn)題解決的教學(xué)策略研究[D];天津師范大學(xué);2009年
,本文編號(hào):1796660
本文鏈接:http://sikaile.net/zhongdengjiaoyulunwen/1796660.html