時間序列相似性與預(yù)測算法研究及其應(yīng)用
[Abstract]:Time series analysis is widely used in various fields. Similarity analysis is the basis of time series analysis and prediction is an important problem in time series analysis. This paper aims at the similarity and prediction of time series data and passenger flow time series data in medical science. Four problems were studied and discussed in this paper: dynamic analysis and prognostic judgement of Boolean time series of stroke symptoms and syndromes, characteristic analysis and prognosis judgement of EEG data of stroke; The characteristic analysis of focal location and EEG signal of stroke, the similarity and prediction analysis of passenger flow data of rail transit. The main work and innovations of this paper are summarized as follows: firstly, the Boolean time series data of stroke symptoms and syndromes are analyzed. This paper discusses the characteristics of Boolean time series monitoring data of cerebral apoplexy symptoms and syndromes from the perspective of traditional Chinese medicine, and proposes an association rule mining algorithm for Boolean time series data. The prognosis of patients was judged by dynamic change information of symptoms and syndromes. Secondly, this paper analyzes the EEG time series data of stroke, discusses the characteristics of normal EEG data and abnormal cerebral apoplexy EEG data from the point of view of western medicine, and puts forward the bilateral symmetry metric index of EEG time series information. The method of distinguishing normal EEG from abnormal apoplexy and the algorithm of predicting the prognosis of stroke were put forward. Thirdly, the location of the focus of the time series of stroke is further analyzed, and various features of the EEG sequence of stroke are discussed and compared, and the method of location analysis of the lesion in the time series of stroke is put forward. Fourthly, the paper analyzes the time series data of rail transit passenger flow, mainly discusses the quasi-periodicity of the passenger flow data, and improves the similarity and prediction method of the existing urban road traffic flow time series. Based on the analysis of passenger flow data of rail transit, an algorithm of long-term passenger flow prediction based on similarity model is proposed.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:R743.3;O211.61
【參考文獻】
相關(guān)期刊論文 前10條
1 雷皇英;;動態(tài)腦電圖對腦梗死急性期早期診斷的意義[J];湘南學(xué)院學(xué)報(醫(yī)學(xué)版);2008年02期
2 彭軍強;吳平東;殷罡;陳之龍;馬樹元;;Hilbert-Huang變換結(jié)合近似熵在疲勞駕駛時腦電分析中的應(yīng)用[J];公路交通科技;2008年06期
3 白惠霞;;動態(tài)腦電圖變化在急性進展型腦梗死中的應(yīng)用[J];中國實用神經(jīng)疾病雜志;2009年05期
4 沈斌;姚敏;;一種新的動態(tài)關(guān)聯(lián)規(guī)則及其挖掘算法[J];控制與決策;2009年09期
5 曾海泉;胡勤友;周水庚;胡運發(fā);;基于互關(guān)聯(lián)后繼樹的時序模式挖掘[J];模式識別與人工智能;2003年03期
6 王金龍;徐從富;;啟發(fā)式全局偏序挖掘算法[J];模式識別與人工智能;2008年02期
7 張志芳,俞麗華,賈莉娟,周敏杰,張捷,盧娜;37例心肺復(fù)蘇后昏迷病人的腦電圖分析[J];臨床腦電學(xué)雜志;2000年04期
8 吳大嶸,梁偉雄,溫澤淮,黃燕,賴世隆;建立中風(fēng)病血瘀證宏觀辨證量化標(biāo)準(zhǔn)的方法探討[J];廣州中醫(yī)藥大學(xué)學(xué)報;1999年04期
9 趙麗娜;王保強;堯德中;;基于信號處理的腦電相位同步性分析方法研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2008年02期
10 王化賢;王東生;邱佳陵;李英群;;動態(tài)腦電圖監(jiān)護對大面積腦梗死早期診斷的臨床價值[J];中國醫(yī)師進修雜志;2006年28期
相關(guān)博士學(xué)位論文 前1條
1 李星毅;基于相似性的交通流分析方法[D];北京交通大學(xué);2010年
,本文編號:2230114
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2230114.html