天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

丁基苯酞調(diào)控大鼠急性腦梗死AQP4表達(dá)的多b值擴散成像評價

發(fā)布時間:2018-06-21 02:21

  本文選題:大鼠 + 腦缺血 ; 參考:《鄭州大學(xué)》2016年碩士論文


【摘要】:背景和目的急性腦缺血是臨床常見疾病,腦缺血繼發(fā)的腦水腫與顱內(nèi)壓增高、腦疝等病理過程密切相關(guān),是引起腦缺血患者急性期死亡的主要原因之一,也對腦缺血疾病過程及預(yù)后具有重要的價值。腦缺血引起水腫的分子級聯(lián)機制包括細(xì)胞膜離子泵的丟失、細(xì)胞腫脹,繼發(fā)自由基及蛋白酶的形成堆積,進(jìn)一步導(dǎo)致細(xì)胞膜破壞,造成不可挽回的損害。自從Agre等在1993年發(fā)現(xiàn)水通道蛋白(Water channel protein,WCP)以來,越來越多的基礎(chǔ)和臨床研究確定了其在水分子跨細(xì)胞膜轉(zhuǎn)運過程中的重要作用,尤其是水通道蛋白-4(Aquaporin 4,AQP4)越來越多的被學(xué)者們認(rèn)為與腦水腫的病理過程密切相關(guān)。傳統(tǒng)磁共振擴散加權(quán)成像(Diffusion weighted imaging,DWI)成像的理論基礎(chǔ)是水分子在組織細(xì)胞間的自由擴散運動,傳統(tǒng)理念認(rèn)為主要是因為組織中細(xì)胞膜、細(xì)胞間質(zhì)等對水分子自由運動的限制,以及水分子在擴散過程中部分與細(xì)胞或細(xì)胞間隙的組織上大分子交換。細(xì)胞膜上具有豐富的、不同亞型的水通道蛋白分布。并且,水分子在細(xì)胞內(nèi)及細(xì)胞間隙自由擴散運動的速率與其通過細(xì)胞膜水通道蛋白(AQPs)的速率存在顯著差異。水通道蛋白理論的建立對傳統(tǒng)DWI成像機理提出了一定挑戰(zhàn),并能讓人們在分子醫(yī)學(xué)、分子影像學(xué)以及分子生物學(xué)等方面重新了解DWI技術(shù),也為DWI進(jìn)一步的臨床研究及應(yīng)用提供了一定的理論基礎(chǔ)。丁基苯酞是我國在腦血管疾病領(lǐng)域的第一個擁有自主知識產(chǎn)權(quán)的國家一類新藥,該藥物對缺血性腦卒中的保護作用已經(jīng)得到許多基礎(chǔ)及臨床試驗的證明。丁基苯酞可通過改善微循環(huán)灌注、抑制腦細(xì)胞凋亡等來保護缺血性腦損傷,也有研究認(rèn)為其可調(diào)控AQP-4的表達(dá)保護缺血性腦水腫,但機制尚不明確。本實驗通過大鼠急性腦缺血腦水腫多b值DWI成像分析所測參數(shù)的動態(tài)演變規(guī)律;探討丁基苯酞對大鼠腦缺血后AQP-4的調(diào)控機制。材料與方法1、制作大鼠大腦中動脈梗阻模型(middle cerebral artery occlusion,MCAO),分為模型組、丁基苯酞組、假手術(shù)組。模型組及丁基苯酞組按照插入線栓的時間分再為1小時、3小時、6小時、12小時、24小時組,每組10只。2、采用美國GE 750 3.0T超導(dǎo)磁共振掃描儀器及大鼠專用線圈。掃描序列包括T1加權(quán)成像(T1-weighted imaging,T1WI)、T2加權(quán)成像(T2-weighted imaging,T2WI)、T2WIFLAIR、b值=1000s/mm2擴散加權(quán)成像(DWI)、多b值DWI:梯度擴散因子(b)值為取0、50、100、150、200、300、500、800、1000、1300、1500、1700、2000、2500、3000、3500、4000和4500 s/mm2 18個b值點。3、在造模后3小時三組分別選取5只大鼠,進(jìn)行神經(jīng)功能學(xué)評分,然后斷頭取腦,進(jìn)行干濕重分析。各個時間點掃完圖像后每小組10只大鼠進(jìn)行免疫組織化學(xué)AQP4及PKC的半定量分析。4、標(biāo)準(zhǔn)ADC值A(chǔ)DCst處理與標(biāo)準(zhǔn)DWI圖像,多b值DWI處理采用三組件數(shù)學(xué)模型,b值范圍0-1500 s/mm2(2000 s/mm2)采用雙指數(shù)模型(IVIM)得出D(純擴散系數(shù),反映水分子的自由運動),D~*(偽擴散系數(shù),反映快擴撒或以灌注基礎(chǔ)的分子擴);b值2000-4500 s/mm2(≥2000 s/mm2)時測得ADCuh。所有數(shù)據(jù)均測三次求平均值。5、所有統(tǒng)計分析均采用SPSS 17.0軟件包完成。統(tǒng)計結(jié)果中定量資料以均數(shù)±標(biāo)準(zhǔn)差(SDX±)表示,并進(jìn)行正態(tài)性、方差齊性檢驗。神經(jīng)功能評分比較采用秩和檢驗,三組兩兩間比較應(yīng)用LSD法,以P0.05表示差異有統(tǒng)計學(xué)意義。結(jié)果1.在造模3h后丁基苯酞組與MCAO組比較,其神經(jīng)功能學(xué)評分值有所降低(Z=-2.01,P=0.044);各個組在造模后3小時測得腦組織含水量相互比較,MCAO組與丁基苯酞組、MCAO組于假手術(shù)組、丁基苯酞組與假手術(shù)組差異具有統(tǒng)計學(xué)意義(P1=0.00,P2=0.01,P3=0.01)。2.丁基苯酞組、MCAO組患側(cè)ADCst值12小時下降至最低而后輕度上升,兩組不同時間點異具有統(tǒng)計學(xué)意義(P10.05);D~*、D、ADCuh值在MCAO組中于術(shù)后6h下降至最低,而后輕度上升,而在丁基苯酞組中于術(shù)后12h下降至最低,而后輕度上升;1-6h中,D~*、D、ADCuh值在丁基苯酞組與MCAO組差異具有統(tǒng)計學(xué)意義(P10.05);D~*、D、ADCuh值在各個時間點上MCAO組與假手術(shù)組、丁基苯酞組與假手術(shù)組差異具有統(tǒng)計學(xué)意義P20.05、P30.05);1-6h中MCAO組,ADCuh變化最為明顯(30%)。3.MCAO組及丁基苯酞組1小時后AQP4、PKC表達(dá)開始增加,并于24小時達(dá)到最高值。MCAO組及丁基苯酞組與假手術(shù)組差異具有統(tǒng)計學(xué)意義(P2、P30.05),1-6h MCAO組與丁基苯酞組相比各個時間點的表達(dá)有差異且有統(tǒng)計學(xué)意義(P10.05)。AQP4、PKC的表達(dá)在1-6h時間段內(nèi)最為明顯。結(jié)論1.D~*值能夠反映部分微循環(huán)灌注信息,為活體急性缺血后腦組織中微循環(huán)變化提供有價值的信息。2.ADCuh值監(jiān)測腦梗死超急性期腦水腫的變化優(yōu)于ADCst、D~*、D。ADCuh可能反映部分水通道蛋白信息。3.丁基苯酞可下調(diào)PKC及AQP-4表達(dá),綜合改善腦缺血性腦水腫;丁基苯酞可能通過PKC通路調(diào)控AQP-4表達(dá)需要進(jìn)一步去研究。
[Abstract]:Background and objective acute cerebral ischemia is a common clinical disease. Cerebral edema secondary to cerebral ischemia is closely related to the pathological process such as intracranial hypertension and brain hernia. It is one of the main causes of acute cerebral ischemia death, and it also has important value for the process and prognosis of cerebral ischemia. The loss of the cell membrane ion pump, the swelling of the cells, the formation and accumulation of secondary free radicals and protease, further causing cell membrane destruction and irreparable damage. Since the discovery of Water channel protein (WCP) in 1993, more and more basic and clinical studies have determined its transcellular membrane transport in water molecules. The important role of the process, especially the water channel protein -4 (Aquaporin 4, AQP4), is believed to be closely related to the pathological process of brain edema. The theoretical basis of the traditional magnetic resonance diffusion-weighted imaging (Diffusion weighted imaging, DWI) imaging is the free diffusion movement between the water molecules in the tissue cells, and the traditional concept is considered to be the basis of the traditional theory. It is mainly due to the restriction of the free movement of water molecules by the cell membrane in the tissue, the intercellular mass and the free movement of water molecules, and the exchange of large molecules on the tissue in the cell or cell gap in the diffusion process. The cell membrane has a rich, different subtype of aquaporin distribution. And the water molecules spread freely in the cell and in the space. The rate of movement is significantly different from the rate of the cell membrane water channel protein (AQPs). The establishment of the theory of aquaporin is a challenge to the traditional DWI imaging mechanism, and can make people understand the DWI technology in molecular medicine, molecular imaging and molecular biology, and further clinical research and application for DWI. It provides a theoretical basis. Butylphthalide is the first country with independent intellectual property rights in the field of cerebrovascular disease. The protective effect of this drug on ischemic stroke has been proved by many basic and clinical trials. Butylphthalide can be used to improve microcirculation perfusion and inhibit apoptosis of brain cells. To protect ischemic brain injury, there is also a study that it can regulate the expression of AQP-4 to protect ischemic brain edema, but the mechanism is still not clear. In this experiment, the dynamic evolution of parameters measured by the multiple b value DWI imaging analysis of acute cerebral ischemia brain edema in rats and the regulation mechanism of AQP-4 after cerebral ischemia in rats by butylphthalide were discussed. Materials and methods 1, The rat model of middle cerebral artery occlusion (MCAO) was divided into model group, butylphthalide group and sham operation group. The model group and butylphthalide group were divided into 1 hours, 3 hours, 6 hours, 12 hours, 24 hour group and 10.2 in each group, using American GE 750 3.0T MRI scanning instrument and large The scanning sequence includes T1 weighted imaging (T1-weighted imaging, T1WI), T2 weighted imaging (T2-weighted imaging, T2WI), T2WIFLAIR, b values, =1000s/mm2 diffusion weighted imaging (DWI), and the value of the multiple values gradient diffusion factor is 4500. Value point.3, 5 rats were selected in the three groups 3 hours after the model, and then the neurologic score was scored. Then the head was taken to take the brain to carry out the dry and wet weight analysis. After the images were scanned at each time point, 10 rats in each group were used for the semi quantitative analysis of the immunohistochemical AQP4 and PKC, the standard ADC value ADCst treatment and the standard DWI image, and the multi b value DWI processing three. The component mathematical model, the b value range 0-1500 s/mm2 (2000 s/mm2) uses a double exponential model (IVIM) to obtain D (pure diffusion coefficient reflecting the free movement of water molecules), D~* (pseudo diffusion coefficient, reflecting fast spreading or molecular expansion on the basis of perfusion); b value 2000-4500 s/mm2 (> 2000 s/mm2) and all ADCuh. all data measured by ADCuh. three times average value.5, all The statistical analysis was performed with SPSS 17 software package. The quantitative data in the statistical results were expressed with mean standard deviation (SDX +), normal and homogeneity test. The scores of the neurological function were compared with the rank sum test, the three groups were compared with the LSD method, and the difference was statistically significant by P0.05. Results 1. in the 3H group after the model 3H Compared with the MCAO group, the score of the neurologic score was decreased (Z=-2.01, P=0.044), and the water content of the brain tissue was compared in each group 3 hours after the model, group MCAO and butylphthalide group, the group MCAO in the sham group, the difference between the butylphthalide group and the sham group was statistically significant (P1=0.00, P2=0.01, P3=0.01) in the.2. butyl phthalide group, and the MCAO group was developed. The side ADCst value decreased to a minimum and then slightly increased in 12 hours. The two groups had statistical significance at different time points (P10.05); D~*, D, ADCuh value decreased to the lowest in MCAO group and then slightly increased, while in the butylphthalide group, 12h decreased to the lowest and then slightly increased; 1-6h, D~*, D, and ADCuh values in the butylphthalide group The difference of the group was statistically significant (P10.05); the values of D~*, D, and ADCuh were in the MCAO group and the sham operation group at all time points, the difference between the Ding Ji phthalide group and the sham group was statistically significant P20.05, P30.05); the MCAO group in 1-6h was the most obvious (30%).3.MCAO group and Ding Ji phenthalide group after 1 hours, the expression began to increase, and reached 24 hours. The difference between the highest.MCAO group and the butyl phthalide group and the sham group was statistically significant (P2, P30.05). The expression of each time point in the 1-6h MCAO group was different from that of the butylphthalide group and had statistical significance (P10.05).AQP4, and the expression of PKC was most obvious in the 1-6h time period. The nodal 1.D~* value could reflect the partial microcirculation perfusion information. The changes of microcirculation in cerebral tissue after acute ischemia provide valuable information.2.ADCuh value monitoring the changes of cerebral edema in hyperacute phase of cerebral infarction better than ADCst, D~*, D.ADCuh may reflect partial water channel protein information.3. Ding Jiben phthalein can downregulate PKC and AQP-4 expression and improve cerebral hemorrhagic brain edema; butylphthalide may be modulated through PKC pathway Control of AQP-4 expression needs to be further studied.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:R743.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳頌春;洪震;魏文石;;丁基苯酞軟膠囊治療缺血性腦血管疾病的臨床對照研究[J];實用全科醫(yī)學(xué);2006年06期

2 秦榮新;梁健成;;丁基苯酞的藥理及臨床研究進(jìn)展[J];海峽藥學(xué);2009年01期

3 陳洪;王楓;姚繼國;于淼;孫曉江;;丁基苯酞對老化果蠅作用的實驗研究[J];中國老年學(xué)雜志;2009年08期

4 胡云南;;丁基苯酞治療血管性癡呆的臨床療效觀察[J];中風(fēng)與神經(jīng)疾病雜志;2010年01期

5 翟鍇華;劉伯語;盧宏;;丁基苯酞對血管性癡呆大鼠的保護作用[J];中國現(xiàn)代醫(yī)藥雜志;2010年11期

6 張倩;姚蔚;趙梅珍;史楠;;丁基苯酞治療急性缺血性腦卒中療效觀察[J];中華臨床醫(yī)師雜志(電子版);2011年16期

7 王寧寧;李曉紅;李月;姜明燕;;高效液相色譜法研究3-正丁基苯酞在大鼠體內(nèi)的組織分布情況[J];中國藥學(xué)雜志;2012年19期

8 高奧;呂華沖;蔡金艷;王平;王健壯;;正丁基苯酞的合成及結(jié)構(gòu)表征[J];廣東藥學(xué)院學(xué)報;2013年03期

9 趙玉武;陳靜炯;蔣青青;薛波;余愛勇;;丁基苯酞治療糖尿病性周圍神經(jīng)病的療效觀察[J];中國神經(jīng)免疫學(xué)和神經(jīng)病學(xué)雜志;2009年05期

10 趙春順,崔升淼,劉曉紅,劉雅莉,何仲貴,張汝華;3-正丁基苯酞含量及有關(guān)物質(zhì)測定的方法學(xué)研究[J];沈陽藥科大學(xué)學(xué)報;2004年01期

相關(guān)會議論文 前10條

1 高遠(yuǎn);陳華艷;察雪湘;胡香杰;海莉麗;喬海靈;;6-溴基丁基苯酞對大鼠局灶性腦缺血再灌注的保護作用[A];全國第十一屆生化與分子藥理學(xué)學(xué)術(shù)會議論文集[C];2009年

2 察雪湘;陳華艷;高遠(yuǎn);胡香杰;海莉麗;喬海靈;;6-氟基丁基苯酞對大鼠局灶性腦缺血再灌注的保護作用[A];全國第十一屆生化與分子藥理學(xué)學(xué)術(shù)會議論文集[C];2009年

3 王玲;曾憲可;彭英;馮亦璞;王曉良;;丁基苯酞抗小鼠血栓形成的研究[A];中國藥理學(xué)會第八次全國代表大會暨全國藥理學(xué)術(shù)會議論文摘要匯編[C];2002年

4 王曉良;;丁基苯酞及其衍生物抗癡呆作用機理研究[A];2011全國老年癡呆與衰老相關(guān)疾病學(xué)術(shù)會議第三屆山東省神經(jīng)內(nèi)科醫(yī)師(學(xué)術(shù))論壇論文匯編[C];2011年

5 王曉良;;丁基苯酞及其衍生物抗癡呆作用機理研究[A];中國神經(jīng)科學(xué)學(xué)會第九屆全國學(xué)術(shù)會議暨第五次會員代表大會論文摘要集[C];2011年

6 徐少峰;曾憲可;彭英;馮亦璞;王曉良;;丁基苯酞抑制血栓形成的研究[A];第八屆全國生化藥理學(xué)術(shù)討論會暨第七屆Servier獎頒獎大會會議摘要集[C];2003年

7 王玲;曾憲可;彭英;馮亦璞;王曉良;;丁基苯酞抗小鼠血栓形成的研究[A];中國藥理學(xué)會第八次全國代表大會論文摘要集(第二部分)[C];2002年

8 彭英;曾憲可;馮亦璞;王曉良;;丁基苯酞對血小板聚集抑制作用的研究[A];第八屆全國生化藥理學(xué)術(shù)討論會暨第七屆Servier獎頒獎大會會議摘要集[C];2003年

9 常青;王曉良;;手性丁基苯酞對局灶性腦缺血再灌注大鼠神經(jīng)細(xì)胞凋亡的作用[A];海峽兩岸三地藥理學(xué)學(xué)術(shù)報告會論文匯編[C];2001年

10 彭英;曾憲可;馮亦璞;王曉良;;丁基苯酞抗血小板和抗血栓的研究[A];中國藥理學(xué)會第八次全國代表大會論文摘要集(第二部分)[C];2002年

相關(guān)重要報紙文章 前4條

1 李靜;丁基苯酞拆分體療效更強[N];中國醫(yī)藥報;2006年

2 李和平;丁基苯酞研究獲2004年北京市科技一等獎[N];中國醫(yī)藥報;2005年

3 邱陽;新藥丁基苯酞治療急性缺血性腦卒中[N];科技日報;2005年

4 金豐杰;一類新藥恩必普強勁上市[N];醫(yī)藥經(jīng)濟報;2004年

相關(guān)博士學(xué)位論文 前8條

1 何臘平;有機介質(zhì)中外消旋丁基苯酞的酶法拆分[D];江南大學(xué);2008年

2 種兆忠;丁基苯酞的藥理作用及作用機制的研究[D];中國協(xié)和醫(yī)科大學(xué);1998年

3 吉新彩;丁基苯酞對雙孔鉀離子通道TREK-1的作用及在低灌注腦缺血中相關(guān)藥理學(xué)研究[D];北京協(xié)和醫(yī)學(xué)院;2008年

4 常青;手性丁基苯酞抑制腦缺血誘導(dǎo)的凋亡及消旋丁基苯酞對離子通道作用的研究[D];中國協(xié)和醫(yī)科大學(xué);2002年

5 馮新紅;丁基苯酞治療與預(yù)防肌萎縮側(cè)索硬化SOD1-G93A轉(zhuǎn)基因小鼠的實驗研究 正常人外周靜脈血SOD1蛋白表達(dá)水平的檢測[D];北京協(xié)和醫(yī)學(xué)院;2011年

6 趙春順;3-正丁基苯酞體內(nèi)藥動學(xué)及腦內(nèi)轉(zhuǎn)運機理的研究[D];沈陽藥科大學(xué);2003年

7 彭英;左旋丁基苯酞抗腦缺血和抗老年癡呆的藥理作用及機制研究[D];中國協(xié)和醫(yī)科大學(xué);2004年

8 徐皓亮;消旋和光活丁基苯酞對血栓形成、腦微循環(huán)障礙及腦缺血后炎癥的作用及其機理研究[D];中國協(xié)和醫(yī)科大學(xué);1999年

相關(guān)碩士學(xué)位論文 前8條

1 韓菲;丁基苯酞對1型糖尿病肝損傷大鼠Nrf2-ARE信號通路的影響[D];河北醫(yī)科大學(xué);2015年

2 趙寶瓊;丁基苯酞調(diào)控大鼠急性腦梗死AQP4表達(dá)的多b值擴散成像評價[D];鄭州大學(xué);2016年

3 吳麗蓉;丁基苯酞抗大鼠大腦皮質(zhì)神經(jīng)元氧糖剝奪/復(fù)氧炎性損傷及機制[D];重慶醫(yī)科大學(xué);2007年

4 肖連臣;丁基苯酞對老年小鼠腦組織抗氧化能力影響的研究[D];華中科技大學(xué);2012年

5 趙云霞;丁基苯酞拮抗Aβ1-42致神經(jīng)元凋亡的線粒體保護機制[D];山東大學(xué);2011年

6 蔡耘;丁基苯酞對血管性癡呆小鼠海馬神經(jīng)元NF-κB、ICAM-1表達(dá)的影響[D];河北醫(yī)科大學(xué);2010年

7 徐玲;6-氟基丁基苯酞對H_2O_2誘導(dǎo)的PC12細(xì)胞氧化損傷的保護作用及其機制研究[D];河南大學(xué);2010年

8 郭鐵;丁基苯酞對慢性腦缺血老齡大鼠海馬中突觸素及NMDA受體亞單位NR2B表達(dá)的影響[D];鄭州大學(xué);2007年



本文編號:2046757

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2046757.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e5350***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com