腦缺血再灌注中TIGAR蛋白調(diào)控的分子機(jī)制
本文選題:TIGAR + 葡萄糖; 參考:《蘇州大學(xué)》2015年碩士論文
【摘要】:目的:研究腦缺血再灌注損傷對(duì)TIGAR蛋白的調(diào)節(jié)及相應(yīng)的分子機(jī)制。方法:采用小鼠短暫性大腦中動(dòng)脈阻塞再灌注(transient middle cerebral artery occlusion/reperfusion,MCAO/R)模型和體外培養(yǎng)原代神經(jīng)元缺糖缺氧再?gòu)?fù)糖復(fù)氧(oxygen glucose dripivation/reoxygenation,OGD/R)模型。使用Western blot法檢測(cè)缺血后小鼠大腦皮層和原代皮層神經(jīng)元中TIGAR和p53蛋白的表達(dá);在缺血前0.5 h給予p53抑制劑pifithrin-alpha(PFT-α,30μM),Western blot法檢測(cè)PFT-α對(duì)原代皮層神經(jīng)元中TIGAR以及p53靶蛋白Bax表達(dá)的影響;構(gòu)建p53慢病毒感染原代皮層神經(jīng)元細(xì)胞敲除p53蛋白,檢測(cè)細(xì)胞內(nèi)TIGAR、p53、Bax蛋白的水平。使用強(qiáng)生血糖儀檢測(cè)小鼠缺血前后的血糖水平,Western blo法檢測(cè)胰島素(insulin,1 U/kg)對(duì)小鼠缺血皮層區(qū)TIGAR表達(dá)的影響。小鼠尾靜脈注射50%的葡萄糖溶液(500 g/kg),檢測(cè)血糖水平和大腦皮層區(qū)TIGAR的表達(dá)。采用不同濃度的葡萄糖溶液(0-150μM)刺激HT22細(xì)胞2 h,Western blot法檢測(cè)細(xì)胞內(nèi)TIGAR的水平,CCK8檢測(cè)細(xì)胞的活性以及在熒光顯微鏡下觀察HT22細(xì)胞的形態(tài)。小鼠側(cè)腦室注射腎上腺素(0.12mg/kg)、尾靜脈注射氫化可的松(50,100,200,400 mg/kg)以及胰高血糖素(0.1,0.5,1,5,10 mg/kg),Western-blot法檢測(cè)大腦皮層區(qū)TIGAR的水平;采用不同濃度的腎上腺素(0.1,1,10,50μM)、氫化可的松(0.01,0.1,1,10,100μM)、胰高血糖素(0.001,0.01,0.1,1,10μM)以及胰島素(0.0625,0.125,0.25,0.5,1μM)刺激HT22細(xì)胞3 h,檢測(cè)細(xì)胞內(nèi)TIGAR的水平。體外培養(yǎng)原代皮層神經(jīng)元細(xì)胞,采用過(guò)氧化氫(H2O2,10,30,90μM)共同培養(yǎng)(3,6,12 h)造氧化應(yīng)激模型,CCK8檢測(cè)細(xì)胞存活率,GSH/GSSG試劑盒檢測(cè)細(xì)胞內(nèi)的GSH水平,DHE探針標(biāo)記檢測(cè)細(xì)胞內(nèi)ROS變化以及Western-blot法檢測(cè)細(xì)胞內(nèi)TIGAR的水平。提前4 h給予抗氧化劑NADPH(10μM),檢測(cè)細(xì)胞內(nèi)TIGAR和ROS的水平。使用Western blot法檢測(cè)缺血后小鼠大腦皮層和原代皮層神經(jīng)元中SP1蛋白的表達(dá);在缺血前24 h給予SP1抑制劑MIT(mithramycin A,300 n M),Western blot法檢測(cè)MIT對(duì)原代皮層神經(jīng)元中TIGAR表達(dá)的影響;構(gòu)建SP1慢病毒感染原代皮層神經(jīng)元敲除SP1蛋白,檢測(cè)細(xì)胞內(nèi)TIGAR和SP1的蛋白水平。結(jié)果:小鼠腦缺血再灌注后,TIGAR水平明顯升高,在3 h達(dá)到峰值(P0.001)。原代皮層神經(jīng)元在OGD/R后,TIGAR和p53蛋白水平明顯升高,分別在3 h和6 h達(dá)到峰值(P0.01,P0.001)。Western blot結(jié)果顯示:使用p53抑制劑PFT-α后對(duì)缺血再灌注誘導(dǎo)的TIGAR的上升沒(méi)有影響,但是能夠明顯抑制p53靶蛋白Bax的水平(P0.001)。構(gòu)建的p53慢病毒能夠顯著抑制原代皮層神經(jīng)元細(xì)胞中p53和Bax的蛋白水平,而對(duì)TIGAR的表達(dá)沒(méi)有明顯影響。小鼠腦缺血再灌注后,血糖水平明顯上升,在0.5 h達(dá)到峰值(P0.001),使用胰島素控制血糖水平后(P0.001),TIGAR的誘導(dǎo)表達(dá)被部分抑制了(P0.01)。給小鼠尾靜脈注射50%的葡萄糖溶液,血糖水平明顯上升,但是TIGAR的水平?jīng)]有明顯變化。體外培養(yǎng)海馬神經(jīng)元細(xì)胞系HT22細(xì)胞,加入葡萄糖繼續(xù)培養(yǎng)2 h,對(duì)TIGAR的表達(dá)、細(xì)胞活力以及形態(tài)均未造成明顯影響。HT22細(xì)胞在無(wú)糖預(yù)培養(yǎng)4 h后加入葡萄糖繼續(xù)培養(yǎng)2 h,Western blot結(jié)果顯示TIGAR的水平?jīng)]有變化。在體內(nèi)實(shí)驗(yàn)中,Western blot結(jié)果顯示:腎上腺素能夠明顯誘導(dǎo)TIGAR蛋白(P0.001,P0.001,P0.001);3 h時(shí)氫化可的松能誘導(dǎo)TIGAR蛋白表達(dá),且呈現(xiàn)劑量依賴性,50 mg/kg的氫化可的松在給藥后1 h和2 h時(shí)明顯激活TIGAR表達(dá)(P0.01,P0.01);0.5和1 mg/kg的胰高血糖素在給藥后2 h時(shí)能夠誘導(dǎo)TIGAR的表達(dá)(P0.05,P0.05)。體外實(shí)驗(yàn)中,HT22細(xì)胞加入激素后繼續(xù)培養(yǎng)3 h,Western blot結(jié)果顯示:1μM的腎上腺素、0.1μM的氫化可的松和1μM的胰高血糖素能夠增加TIGAR的表達(dá)(P0.01,P0.001,P0.01),同時(shí),低劑量的胰島素在一定低濃度范圍內(nèi)抑制TIGAR蛋白的表達(dá)而高劑量的胰島素能激活TIGAR(P0.01,P0.001)。培養(yǎng)原代皮層神經(jīng)元細(xì)胞,加入H2O2繼續(xù)培養(yǎng)造氧化應(yīng)激模型,CCK-8、GSH、DHE和Western blot結(jié)果顯示:30和90μM的H2O2有效抑制了神經(jīng)元細(xì)胞的活力(P0.001,P0.001),降低了細(xì)胞內(nèi)的GSH水平(P0.05,P0.001),增加了細(xì)胞內(nèi)的ROS水平(P0.01,P0.01),同時(shí)在3 h時(shí)H2O2能夠明顯激活TIGAR的表達(dá),且呈現(xiàn)劑量依賴性。提前4 h加入抗氧化劑NADPH,Western blot和DHE結(jié)果顯示:NADPH能夠部分抑制TIGAR的上調(diào)以及ROS的增加(P0.001,P0.05)。Western blot結(jié)果顯示:腦缺血再灌注后,小鼠大腦皮層區(qū)和原代皮層神經(jīng)元細(xì)胞中SP1蛋白明顯被激活,分別在0.5 h和1 h達(dá)到峰值(P0.001,P0.001),使用SP1抑制劑MIT后能夠明顯抑制缺血再灌注誘導(dǎo)的TIGAR的上升(P0.001),構(gòu)建的SP1慢病毒能夠明顯抑制原代皮層神經(jīng)元細(xì)胞中SP1蛋白的表達(dá)(P0.001),同時(shí)能夠明顯抑制缺血再灌注誘導(dǎo)的TIGAR的上升(P0.001)。結(jié)論:腦缺血再灌注激活TIGAR和p53,并且TIGAR的變化不依賴于p53蛋白。腦缺血再灌注誘導(dǎo)血糖上升,控制血糖水平能夠部分抑制TIGAR的表達(dá);葡萄糖不能直接調(diào)控TIGAR;升血糖激素(腎上腺素、氫化可的松、胰高血糖素)能夠誘導(dǎo)TIGAR,而降血糖激素胰島素在一定劑量范圍內(nèi)抑制TIGAR的表達(dá)。ROS能夠誘導(dǎo)TIGAR的表達(dá),抑制ROS則抑制TIGAR的水平。腦缺血再灌注誘導(dǎo)SP1的表達(dá),體外實(shí)驗(yàn)證實(shí),TIGAR受SP1的調(diào)節(jié)。
[Abstract]:Objective: To study the regulation and molecular mechanism of cerebral ischemia reperfusion injury to TIGAR protein. Methods: transient middle cerebral artery occlusion/reperfusion (MCAO/R) model of transient middle cerebral artery (artery occlusion/reperfusion, MCAO/R) model in mice and in vitro cultured primary neurons were cultured in vitro and oxygen deficiency and anoxia reoxygenation (oxygen glucose dripivation/re). Oxygenation, OGD/R) model. Western blot was used to detect the expression of TIGAR and p53 protein in the cerebral cortex and primary cortical neurons of the mice after ischemia. The p53 inhibitor pifithrin-alpha (PFT- alpha, 30 mu M) was given at 0.5 h before ischemia. The effect of alpha on the expression of the primary cortical neurons and the expression of the target protein was detected by Western restriction. P53 protein was knocked out of the primary cortical neurons of p53 lentivirus infection, and the level of TIGAR, p53 and Bax protein in the cells was detected. The blood glucose level of mice before and after ischemia was detected by Johnson glucose meter. The effect of insulin (insulin, 1 U/kg) on the expression of TIGAR in the ischemic cortex area of mice was detected by Western blo method. The injection of glucose in the tail vein of mice was 50%. The liquid (500 g/kg) was used to detect the level of blood sugar and the expression of TIGAR in the cerebral cortex area. The glucose solution of different concentrations (0-150 mu M) was used to stimulate the HT22 cell 2 h, the Western blot method was used to detect the level of TIGAR in the cells, the activity of the cells and the morphology of the HT22 cells were observed by the fluorescence microscope. The mice were injected with adrenaline (0.12mg/kg) in the lateral ventricle. The caudal vein was injected with hydrocortisone (50100200400 mg/kg) and glucagon (0.1,0.5,1,5,10 mg/kg), and Western-blot was used to detect the level of TIGAR in the cerebral cortex, with different concentrations of adrenaline (0.1,1,10,50 mu M), hydrocortisone (0.01,0.1,1,10100 u M), glucagon (0.001,0.01,0.1,1,10 mu M) and insulin (0.0625,0.) (0.0625,0.). 125,0.25,0.5,1 mu M) stimulated the HT22 cell 3 h to detect the level of TIGAR in the cells. The primary cultured cortical neurons were cultured in vitro, and the oxidative stress model was created by co culture of hydrogen peroxide (H2O2,10,30,90 M). The survival rate of the cells was detected by CCK8. The GSH level of the cells was detected by GSH/GSSG reagent box. The level of intracellular TIGAR was detected by Western-blot method. Antioxidant NADPH (10 u M) was given 4 h ahead of time to detect the level of TIGAR and ROS in cells. Western blot method was used to detect the expression of SP1 protein in the cerebral cortex and primary cortical neurons of the mice after ischemia, and 24 h before ischemia. The effect of MIT on the expression of TIGAR in the primary cortical neurons was detected by T, and the protein level of TIGAR and SP1 in the primary cortical neurons of the SP1 lentivirus infection was detected and the protein level of TIGAR and SP1 in the cells was detected. Results: after cerebral ischemia reperfusion in mice, the level of TIGAR increased significantly, and the peak value reached the peak at 3 h (P0.001). The white level was significantly higher, at the peak of 3 h and 6 h respectively (P0.01, P0.001).Western blot results showed that the use of p53 inhibitor PFT- alpha had no effect on the increase of TIGAR induced by ischemia-reperfusion, but could obviously inhibit Bax level of p53 target protein (P0.001). The constructed slow virus could significantly inhibit the primary cortical neurons cells. The protein level of p53 and Bax had no significant influence on the expression of TIGAR. After cerebral ischemia and reperfusion in mice, the blood glucose level increased significantly, reached a peak at 0.5 h (P0.001). After using insulin to control the blood glucose level (P0.001), the induced expression of TIGAR was partially inhibited (P0.01). The glucose level of the tail vein of mice was injected with 50% glucose solution. The blood glucose level was clear. There was no obvious change in the level of TIGAR. The cultured hippocampal neuron cell line HT22 cells were cultured in vitro, and the glucose continued to be 2 h. The expression of TIGAR, cell vitality and morphology did not significantly affect the.HT22 cells after the glucose free pre culture 4 h to add glucose to 2 h, Western blot results showed the level of TIGAR. In the in vivo experiment, Western blot results showed that adrenaline could obviously induce TIGAR protein (P0.001, P0.001, P0.001), and hydrogenated cortisone could induce TIGAR protein expression at 3 h, and showed a dose dependence. The 50 mg/kg hydrocortisone activated TIGAR expression obviously at 1 h and 2 h after administration; 0.5 and 1. Glucagon was able to induce TIGAR expression (P0.05, P0.05) at 2 h after administration. In vitro, HT22 cells added 3 h after adding hormone, and Western blot showed that 1 micron of adrenaline, 0.1 micron hydrocortisone and 1 micron M glucagon could increase the expression of TIGAR. Meanwhile, low doses of insulin In a certain low concentration, the expression of TIGAR protein was inhibited and the high dose of insulin activated TIGAR (P0.01, P0.001). The primary cultured cortical neurons were cultured, and H2O2 was added to the oxidative stress model. The results of CCK-8, GSH, DHE and Western blot showed that 30 and 90 mu M H2O2 effectively inhibited the activity of neuron cells. The intracellular GSH level (P0.05, P0.001) was reduced, and the ROS level in the cell (P0.01, P0.01) was increased. At the same time, the H2O2 could obviously activate the expression of TIGAR at the time of 3 h, and showed a dose dependence. 4 h added to the antioxidant NADPH. .Western blot results showed that after cerebral ischemia-reperfusion, the SP1 protein in the cerebral cortex and primary cortical neurons of the mice was activated obviously, reaching the peak value at 0.5 h and 1 h respectively (P0.001, P0.001). The SP1 inhibitor MIT could obviously inhibit the increase of TIGAR induced by ischemia-reperfusion (P0.001), and the SP1 lentivirus could be obvious. Inhibition of the expression of SP1 protein (P0.001) in the primary cortical neuron cells (P0.001), and can obviously inhibit the increase of TIGAR induced by ischemia-reperfusion (P0.001). Conclusion: cerebral ischemia reperfusion activates TIGAR and p53, and the changes of TIGAR are not dependent on p53 protein. Cerebral ischemia reperfusion induces blood glucose increase, and the control of blood glucose level can partly inhibit TIGAR The expression of glucose can not directly regulate TIGAR, and the hyperglycemic hormone (adrenaline, hydrocortisone, glucagon) can induce TIGAR, while hypoglycemic hormone insulin inhibits the expression of TIGAR in a certain dose and induces the expression of TIGAR and inhibits the level of ROS to inhibit TIGAR. The expression of SP1 is induced by cerebral ischemia-reperfusion. In fact, TIGAR is regulated by SP1.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R743.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅建忠,朱文斌;腦缺血再灌注中補(bǔ)體激活的實(shí)驗(yàn)研究[J];醫(yī)學(xué)臨床研究;2003年06期
2 周杰,馮忠堂,徐蔚;腦缺血再灌注后遲發(fā)性神經(jīng)元死亡的分子機(jī)制[J];河南實(shí)用神經(jīng)疾病雜志;2004年04期
3 周鵬;馬曉明;;電針治療腦缺血再灌注損傷機(jī)理的研究概況[J];云南中醫(yī)學(xué)院學(xué)報(bào);2008年06期
4 蔡世昌;白波;張秋玲;;腦缺血再灌注后神經(jīng)細(xì)胞再生研究進(jìn)展[J];解剖學(xué)研究;2012年01期
5 王銳;腦缺血再灌注與線粒體研究[J];醫(yī)學(xué)綜述;2002年07期
6 呂少萍,管勇;尼莫通對(duì)腦缺血再灌注細(xì)胞凋亡相關(guān)基因表達(dá)影響[J];青島大學(xué)醫(yī)學(xué)院學(xué)報(bào);2005年02期
7 高蕊;甘尚權(quán);;腦缺血再灌注損傷后小分子RNA的分析[J];山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2011年10期
8 張瑩;舒兆瑞;沈梅紅;;線栓法制備腦缺血再灌注的影響因素及探討[J];遼寧中醫(yī)藥大學(xué)學(xué)報(bào);2012年12期
9 岑德意,周蘭蘭,明亮,江勤,馬傳庚;清醒小鼠反復(fù)腦缺血再灌注法致學(xué)習(xí)記憶障礙模型的建立[J];中國(guó)藥理學(xué)通報(bào);2000年02期
10 裴林,李勇,顏景芝,張光毅,崔肇春,朱正美;腦缺血再灌注后酪氨酸蛋白激酶和蛋白磷酸酶的活性變化及其機(jī)制(英文)[J];Acta Pharmacologica Sinica;2000年08期
相關(guān)會(huì)議論文 前10條
1 薛晶;馮加純;鄧方;韓冬;程瑩瑩;金桂花;;腦缺血再灌注早期的炎癥和自由基反應(yīng)的動(dòng)態(tài)變化[A];第十一屆全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2008年
2 張美蓉;張麗;艾厚喜;王文;;參黃花顆粒抗腦缺血再灌注損傷機(jī)理研究綜述[A];中國(guó)藥理學(xué)會(huì)補(bǔ)益藥藥理專業(yè)委員會(huì)成立大會(huì)暨人參及補(bǔ)益藥學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2011年
3 張美蓉;王文;;參黃花顆?鼓X缺血再灌注損傷機(jī)理研究綜述[A];2011全國(guó)老年癡呆與衰老相關(guān)疾病學(xué)術(shù)會(huì)議第三屆山東省神經(jīng)內(nèi)科醫(yī)師(學(xué)術(shù))論壇論文匯編[C];2011年
4 張美蓉;張麗;艾厚喜;王文;;參黃花顆粒抗腦缺血再灌注損傷機(jī)理研究綜述[A];第一屆全國(guó)麻醉藥理專業(yè)委員會(huì)第二次學(xué)術(shù)會(huì)議論文集[C];2011年
5 張美蓉;張麗;艾厚喜;王文;;參黃花顆?鼓X缺血再灌注損傷機(jī)理研究綜述[A];中國(guó)成人醫(yī)藥教育論壇(4)[C];2011年
6 ;參黃花顆?鼓X缺血再灌注損傷機(jī)理研究綜述[A];2012中國(guó)醫(yī)師協(xié)會(huì)中西醫(yī)結(jié)合醫(yī)師分會(huì)神經(jīng)病學(xué)專家委員會(huì)學(xué)術(shù)年會(huì)論文匯編[C];2012年
7 李建生;任小巧;劉軻;劉正國(guó);孔令飛;;老齡大鼠腦缺血再灌注神經(jīng)細(xì)胞凋亡變化規(guī)律研究[A];中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)第七次全國(guó)實(shí)驗(yàn)醫(yī)學(xué)學(xué)術(shù)研討會(huì)論文匯編[C];2004年
8 葛林寶;徐鳴曙;方程;徐佳;;電針對(duì)腦缺血再灌注大鼠紋狀體內(nèi)單胺類遞質(zhì)影響的動(dòng)態(tài)研究[A];全國(guó)針?lè)ň姆ㄅR床與科研學(xué)術(shù)研討會(huì)暨脊柱病研究新進(jìn)展論文匯編[C];2005年
9 陳敏;葛金文;陳懿;劉吉勇;朱惠斌;;腦泰方促腦缺血再灌注大鼠腦血管新生的實(shí)驗(yàn)研究[A];湖南省首屆生理—藥理科學(xué)青年論壇論文摘要匯編[C];2009年
10 鄧世芳;蔣紅玉;張思為;曹平;;芪棱湯對(duì)大鼠腦缺血再灌注后熱休克蛋白70的影響[A];中華中醫(yī)藥學(xué)會(huì)血栓病分會(huì)第四次學(xué)術(shù)研討會(huì)暨廣東省中醫(yī)藥學(xué)會(huì)血栓病專業(yè)委員會(huì)首屆學(xué)術(shù)研討會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 衣曉峰;哈醫(yī)大揭示靜麻對(duì)腦缺血再灌注損傷后的保護(hù)機(jī)理[N];中國(guó)醫(yī)藥報(bào);2007年
2 ;抗呆I號(hào)對(duì)受損神經(jīng)組織有保護(hù)和修復(fù)作用[N];中國(guó)中醫(yī)藥報(bào);2005年
3 羅薇;中藥治療VD實(shí)驗(yàn)研究進(jìn)展[N];中國(guó)醫(yī)藥報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 沙瑩;粒細(xì)胞集落刺激因子對(duì)腦缺血再灌注大鼠的治療及其作用機(jī)制的研究[D];吉林大學(xué);2010年
2 瞿濤;電針對(duì)腦缺血再灌注大鼠腦內(nèi)血管新生影響的研究[D];湖北中醫(yī)學(xué)院;2009年
3 張莉;針刺對(duì)大鼠腦缺血再灌注后線粒體損傷相關(guān)因素影響的研究[D];北京中醫(yī)藥大學(xué);2004年
4 李強(qiáng);雷帕霉素對(duì)腦缺血再灌注后線粒體損傷的影響[D];上海交通大學(xué);2014年
5 宋銳鋒;中藥抗呆Ⅰ號(hào)對(duì)腦缺血再灌注星形膠質(zhì)細(xì)胞因子的影響[D];北京中醫(yī)藥大學(xué);2002年
6 鄭一;大鼠腦缺血再灌注后遲發(fā)性神經(jīng)元死亡的藥物干預(yù)研究[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2007年
7 趙紅;高壓氧對(duì)腦缺血再灌注小鼠血腦屏障通透性的影響[D];中國(guó)醫(yī)科大學(xué);2003年
8 晁曉東;缺血再灌注腦損傷后蛇床子素的作用及機(jī)制研究[D];第四軍醫(yī)大學(xué);2011年
9 朱肖菊;電項(xiàng)針對(duì)腦缺血再灌注大鼠腦保護(hù)作用的實(shí)驗(yàn)研究[D];黑龍江中醫(yī)藥大學(xué);2008年
10 丁德光;電針對(duì)腦缺血再灌注大鼠腦損傷保護(hù)作用及機(jī)制的研究[D];湖北中醫(yī)學(xué)院;2006年
相關(guān)碩士學(xué)位論文 前10條
1 崔曉雅;參芎化瘀膠囊預(yù)處理對(duì)腦缺血再灌注大鼠一氧化氮合酶亞型表達(dá)的影響[D];河北聯(lián)合大學(xué);2014年
2 孫美玲;腦缺血再灌注中TIGAR蛋白調(diào)控的分子機(jī)制[D];蘇州大學(xué);2015年
3 高賽紅;高血脂對(duì)大鼠腦缺血再灌注損傷后p38和MMP-9表達(dá)的影響[D];山西醫(yī)科大學(xué);2015年
4 沙鵬;mTOR對(duì)腦缺血后適應(yīng)改善認(rèn)知功能作用的研究[D];昆明醫(yī)科大學(xué);2015年
5 馬建鵬;康腦液對(duì)大鼠腦缺血再灌注損傷后神經(jīng)血管因子、MMP-9、ERK1/2表達(dá)的影響[D];河北北方學(xué)院;2015年
6 江濤;電針通過(guò)神經(jīng)元α7nAChR調(diào)控炎癥小體減輕腦缺血后神經(jīng)炎癥的作用及其機(jī)制[D];第四軍醫(yī)大學(xué);2015年
7 李逸塵;大鼠腦缺血再灌注后海馬內(nèi)皮細(xì)胞生長(zhǎng)因子與突觸素關(guān)系的研究[D];蘭州大學(xué);2006年
8 宋兵;黃連素對(duì)腦缺血再灌注小鼠損傷和免疫系統(tǒng)的影響[D];暨南大學(xué);2009年
9 李林;黃芩苷對(duì)腦缺血再灌注小鼠及其免疫系統(tǒng)的保護(hù)作用[D];暨南大學(xué);2009年
10 付琪;文冠果柄苷對(duì)腦缺血再灌注小鼠學(xué)習(xí)記憶障礙的改善作用[D];沈陽(yáng)藥科大學(xué);2009年
,本文編號(hào):1893715
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/1893715.html