Logistic函數(shù)模型在預(yù)測慢病患病率中的應(yīng)用
[Abstract]:Objective to explore the application of different Logistic function models in predicting the prevalence of chronic non-communicable diseases. Methods based on the data of four large-scale hypertension sampling surveys since the founding of the people's Republic of China, the logarithm of (gross domestic product,GDP per capita and the aging rate (the proportion of people over 65 years old) were taken as independent variables and the prevalence rate as dependent variables respectively. According to the upper limit of the model of hypertension prevalence in the past 50 years in the United States, the Logistic function model is established to predict the future development trend of hypertension. The average absolute error (MAE), mean square error (MSE) and the decision coefficient (R2) of the models were calculated to compare their fitting results. Results taking 40% as the upper bound of prevalence of Logistic model, the estimated prevalence rate in 2010 is 20.355.The prevalence rate will be stable (MAE=0.735,MSE=0.704,R2=0.963) in 2060, and the logarithm of GDP per capita will be taken as independent variable. The prevalence rate is estimated to be 23.80% (MAE=0.896,MSE=0.969,R2=0.964) in 2010 and 26.63% (MAE=1.004,MSE=1.659,R2=0.945) in 2010 when the aging rate is the independent variable. Conclusion in theory, the Logistic function model accords with the prediction of the future disease development, and in practice, the epidemic situation of other countries and regions can be found as the realistic basis, and the prediction results are reliable. The model with GDP and aging rate as independent variable pays more attention to the clinical significance of data.
【作者單位】: 北京協(xié)和醫(yī)學(xué)院中國醫(yī)學(xué)科學(xué)院 國家心血管病中心 阜外心血管病醫(yī)院 心血管疾病國家重點實驗室國家心血管病中心;
【分類號】:R181.3
【參考文獻】
相關(guān)期刊論文 前7條
1 李媛秋;代敏;陳元立;張思維;陳萬青;代珍;鄒小農(nóng);;中國省區(qū)水平肺癌死亡率估計方法研究[J];中國肺癌雜志;2011年02期
2 谷川;張岳;;GM(1,1)灰色模型改進及其應(yīng)用[J];海洋測繪;2008年03期
3 馮丹;韓曉娜;趙文娟;生u!;楊紅;方立群;曹務(wù)春;;中國內(nèi)地法定報告?zhèn)魅静☆A(yù)測和監(jiān)測的ARIMA模型[J];疾病控制雜志;2007年02期
4 彭志行;鮑昌俊;趙楊;易洪剛;于浩;陳峰;;乘積季節(jié)模型在傷寒副傷寒發(fā)病預(yù)測中的應(yīng)用探析[J];疾病控制雜志;2007年06期
5 曾斌,,李銀,魏文金,魏淑瑩,邢敏霞;飲水型高氟區(qū)8~15歲學(xué)生氟斑牙患病率與飲水、尿含氟量關(guān)系的研究[J];寧夏醫(yī)學(xué)雜志;1994年02期
6 金光楠;蔡振群;;GM(1,1)灰色模型在預(yù)測麻風(fēng)病患病率中的應(yīng)用[J];數(shù)理醫(yī)藥學(xué)雜志;2007年05期
7 馬亮亮;田富鵬;;不同時間序列分析方法在高血壓發(fā)病率預(yù)測中的比較[J];中國老年學(xué)雜志;2010年13期
【共引文獻】
相關(guān)期刊論文 前10條
1 哈媛媛;;ARIMA模型在內(nèi)蒙古GDP預(yù)測中的實證分析與研究[J];北方經(jīng)濟;2008年10期
2 李峰;張會;李甲亮;李樹峰;楊海波;;黃河三角洲區(qū)域經(jīng)濟增長預(yù)測模型的選擇[J];濱州學(xué)院學(xué)報;2010年03期
3 劉艷;武廣臣;;變形監(jiān)測預(yù)報與警報系統(tǒng)的研究與實現(xiàn)[J];測繪標(biāo)準(zhǔn)化;2011年03期
4 葉孟良;李智濤;歐榮;;ARIMA模型在預(yù)測重慶市醫(yī)院日住院量中的應(yīng)用[J];重慶醫(yī)學(xué);2012年13期
5 王志彥;王清心;;基于方根變換的灰色GM(1,1)改進模型[J];甘肅科學(xué)學(xué)報;2012年01期
6 張超鋒;張莉敏;;基于灰色系統(tǒng)模型的達州市農(nóng)業(yè)經(jīng)濟預(yù)測[J];科技和產(chǎn)業(yè);2012年08期
7 林衛(wèi)文;;加速遺傳算法在需水預(yù)測中的應(yīng)用[J];甘肅水利水電技術(shù);2012年08期
8 鄭志勇;張光華;;基于GM(1,1)模型的沉降變形分析及預(yù)報[J];地礦測繪;2012年04期
9 韓保民;郭振華;;改進的精密衛(wèi)星鐘差預(yù)報法[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2013年09期
10 徐曉楠;張曉s
本文編號:2254855
本文鏈接:http://sikaile.net/yixuelunwen/liuxingb/2254855.html