Ub-HBcAg-CTP融合蛋白誘導(dǎo)特異性細(xì)胞毒性T淋巴細(xì)胞反應(yīng)的實(shí)驗(yàn)研究
[Abstract]:Chronic hepatitis B is still a serious disease endangering human health. There are about 350 million people infected with hepatitis B virus (HBV) in the world today. Current treatment methods can not completely eliminate the virus and make it persist in the liver cells, causing chronic infection, and secondary cirrhosis, hepatocellular carcinoma. Infection plays a key role in HBV-specific cytotoxic T lymphocyte (CTL). Ubiquitin-proteasome system (UPS) is a highly selective protein degradation system, which exists widely in eukaryotic cells, and depends on ATPase to maintain the integrity of cells and even the whole organism. Ubiquitinized antigen proteins are recognized by proteasome complexes and degraded into small peptides. They are recognized by antigen presenting cells after binding to major histocompatibility complex (MHC) molecules and induce specific CTL reactions. Normally, because of the existence of membrane barrier, proteins, peptides, etc. are difficult to enter the cell. Some proteins have strong transmembrane activity independent of receptors. These short peptides are called cell penetrating peptides. The most widely used cell penetrating peptide is HIV-Tat protein. PTD (protein transduction domain) is the core fragment of the transmembrane function of Tat protein. The protein containing this fragment has the function of penetrating cell membrane. Smc transduction peptide (CTP), a derivative of PTD, is a new type of peptide transduction system. It removes nuclear localization signal and carries protein macromolecules across cell membrane and specifically locates in cytoplasm. In this study, we constructed Ub-HBc Ag-CTP fusion gene expression plasmid, expressed and purified the protein, using Ub-HBc Ag-C. TP fusion protein stimulated dendritic cell (DC) maturation in vitro and induced specific CTL. BALB / c mice were immunized in vivo. The immune function of specific CTL induced by Ub-HBcAg-CTP fusion protein was investigated. The experiment was divided into three parts: (1) Expression, purification and induction of myeloid dendritic cells in vitro by Ub-HBcAg-CTP fusion protein. Studies on cell maturation; (2) Ub-HBcAg-CTP fusion protein promotes T lymphocyte proliferation and induces specific CTL reaction in vitro; (3) in vivo study on the induction of specific CTL reaction in balb/c mice immunized with ub-hbcag-ctp fusion protein. Part I Expression, purification and in vitro induction of mouse myeloid dendritic cells by Ub-HBcAg-CTP fusion protein Objective: To construct the prokaryotic expression vector of Ub-HBcAg-CTP fusion gene, express and purify the protein, and observe its effect on inducing maturation of murine myeloid dendritic cells in vitro. Colony PCR positive cloning and sequencing were carried out to identify the correct plasmid transformed into Escherichia coli BL21 (DE3) and to purify the protein and identify it by Western blotting. The control group proteins HBcAg-CTP and Ub-HBcAg were constructed and expressed in vitro. Dendritic cells, interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in aggravating group. DC maturation was induced by adding Ub-HBc Ag-CTP, HBc Ag-CTP, Ub-HBcAg and HBc Ag on the 5th day of culture. The distribution and localization of light in the cells were analyzed quantitatively. The expression of surface molecules of dendritic cells was detected by flow cytometry. The content of cytokine IL-12p70 in the supernatant of dendritic cells was detected by enzyme-linked immunosorbent assay (ELISA). Results: A band of 820 bp, 590 BP and 780 BP was amplified by PCR, respectively. Ub-HBcAg-CTP, HBc Ag-CTP and Ub-HBcAg fusion genes were cloned into the expression plasmid pMAL-c2X. The positive clones were sequenced correctly and expressed in DE3. The fusion proteins of Ub-HBcAg-CTP, HBc Ag-CTP and Ub-HBc Ag were identified by Western blotting. It was confirmed that Ub-HBcAg-CTP could penetrate DC membrane into cytoplasm but not into nucleus; Ub-HBcAg-CTP could significantly up-regulate the expression of CD80, CD83, CD86 and MHC-I molecules on DC surface; and the level of IL-12p70 secreted by Ub-HBcAg-CTP group was significantly higher than that of control group. Ub-HBcAg-CTP has the ability to penetrate the dendritic cell membrane and localize in the cytoplasm. It can significantly enhance the expression of costimulatory molecules on the surface of DC, promote the maturation and differentiation of DC, and enhance the ability of DC to secrete IL-12p70 and other cytokines. Part II Ub-HBcAg-CTP fusion protein promotes the proliferation of T lymphocytes and induces specific CTL reaction. Objective: To investigate the effect of DC sensitized by Ub-HBc Ag-CTP fusion protein on enhancing T lymphocyte proliferation and inducing specific cytotoxic T lymphocyte (CTLs) in vitro. Methods: Mice myelogenous DC was isolated and cultured in vitro. Different groups of fusion proteins were added to dendritic cells to induce its maturation and differentiation, then T lymphocyte was isolated and cultured. The secretion levels of interferon-gamma, IL-2, IL-4 and IL-10 in the supernatant of T cells were detected by ELISA, cytokine levels were detected by flow cytometry, T lymphocyte proliferation was detected by CCK-8 kit, and specific CTL activity was detected by lactate dehydrogenase (LDH) release assay. B-HBc Ag-CTP fusion protein can significantly up-regulate the levels of cytokines IFN-gamma and IL-2; flow cytometry showed that the level of CTL induced by Ub-HBc Ag-CTP fusion protein was significantly higher than that of control group and blank group; Ub-HBc Ag-CTP induced dendritic cells proliferation was significantly higher than that of control group; Ub-HBc Ag-CTP induced dendritic cells proliferation was significantly higher than that of Ub-HBc Ag-CTP fusion protein group; Conclusion: Mature DC induced by Ub-HBc Ag-CTP fusion protein can significantly stimulate the secretion of Th1 cytokines, enhance the proliferation of T lymphocytes, significantly increase the expression of CTLs and enhance the specific CTL activity. Part III Ub-HBc Ag-CTP fusion protein immunized BALB/c mice. Objective: To investigate the effect of Ub-HBc Ag-CTP fusion protein on inducing specific CTL reaction in BALB/c mice and the mechanism of inducing CTL by Ub-HBc Ag-CTP fusion protein. Methods: BALB/c mice were randomly divided into two groups. Ub-HBc Ag-CTP (50 ug), HBc Ag-CTP (50 ug), Ub-HBc Ag (50 ug), HBc Ag (50 ug), HBc Ag (50 ug) and blank group (100 UG normal saline) were immunized to mice once a week for three times. Cytokines; Enzyme-linked immunodot assay (ELISPOT) to detect specific T lymphocytes; CCK-8 kit to detect T lymphocyte proliferation activity; LDH release assay to detect specific CTL activity; Western blotting to detect the expression of signal molecules in mouse T lymphocyte JAK/STAT signaling pathway. Results: Ub-HBc Ag-CTP fusion protein was effective. The CTL level induced by the fusion protein was significantly higher than that of other groups, and the proliferation and CTL activity of T lymphocytes induced by the fusion protein were significantly higher than those of control group and blank group; Ub-HBc Ag-CTP fusion protein could significantly up-regulate Jak in T lymphocytes. Conclusion: Ub-HBc Ag-CTP fusion protein can effectively stimulate T lymphocytes to secrete Th1 cytokines and increase the expression of CTLs, and can increase the proliferation and CTL activity of T lymphocytes, which may be related to JAK/ST. Activation of AT signaling pathway is involved.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R512.62
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張志祥,姚其正;融合蛋白—— 一種新的生物工程技術(shù)[J];藥物生物技術(shù);2001年01期
2 李大鵬,王莉,衛(wèi)紅飛,張培因,吳秀麗,萬敏,王燕媚,王愛麗,楊世杰,王麗穎;熱休克蛋白65-MUC1融合蛋白對(duì)小鼠干擾素γ產(chǎn)生細(xì)胞的誘生作用[J];吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2004年03期
3 曲梅花;于繼云;胡美茹;王守訓(xùn);黎燕;;人CD28-Fc融合蛋白在真核細(xì)胞中的表達(dá)與純化[J];醫(yī)學(xué)分子生物學(xué)雜志;2005年05期
4 張榮媛;王靜;李茜;王航雁;;融合蛋白技術(shù)及臨床應(yīng)用進(jìn)展[J];國(guó)際生物制品學(xué)雜志;2006年02期
5 何火聰;劉樹滔;潘劍茹;陳躬瑞;饒平凡;;GST-TAT-GFP融合蛋白的表達(dá)、純化及鑒定[J];福建醫(yī)科大學(xué)學(xué)報(bào);2006年04期
6 嚴(yán)世榮;閆瑩;孫軍;宗義強(qiáng);王小波;屈伸;;TAT-EGFP融合蛋白對(duì)小鼠生物膜穿透性的研究[J];藥物生物技術(shù);2007年05期
7 馬大龍,郭淑君,鄭蕾,陳慰峰;在大腸桿菌高效表達(dá)人白細(xì)胞介素4融合蛋白[J];北京醫(yī)科大學(xué)學(xué)報(bào);1990年04期
8 楊和平,黃宗之;融合蛋白的生產(chǎn)技術(shù)[J];中國(guó)動(dòng)脈硬化雜志;1994年04期
9 廉德君,許根俊;一種改進(jìn)的融合蛋白親和層析純化方法[J];生物化學(xué)與生物物理進(jìn)展;1998年03期
10 李文平,許靜,隋建華,宋增璇;抗人纖維蛋白單鏈抗體-鏈親和素融合蛋白的穩(wěn)定性及對(duì)動(dòng)物纖維蛋白的識(shí)別[J];中國(guó)免疫學(xué)雜志;1999年09期
相關(guān)會(huì)議論文 前10條
1 祝強(qiáng);黃智華;黃予良;覃揚(yáng);;rhEPO-L-Fc融合蛋白的克隆、表達(dá)、生物活性分析及初步藥代動(dòng)力學(xué)研究[A];第九屆西南三省一市生物化學(xué)與分子生物學(xué)學(xué)術(shù)交流會(huì)論文集[C];2008年
2 高基民;呂建新;;白細(xì)胞介素15/鏈親和素融合蛋白的制備及活性測(cè)定[A];中國(guó)遺傳學(xué)會(huì)第八次代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要匯編(2004-2008)[C];2008年
3 孫益;葛霽光;;人睫狀神經(jīng)營(yíng)養(yǎng)因子和可溶性人睫狀神經(jīng)營(yíng)養(yǎng)因子受體的融合蛋白的表達(dá)[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
4 楊振泉;劉巧泉;于恒秀;潘志明;焦新安;;新城疫病毒融合蛋白在轉(zhuǎn)基因水稻葉片中的表達(dá)及其免疫原性[A];中國(guó)生物工程學(xué)會(huì)第四次會(huì)員代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要集[C];2005年
5 陳麗華;王強(qiáng);侯萬國(guó);;不同鏈接劑修飾的融合谷胱甘肽活性的研究[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
6 王榮智;汪世華;林文雄;;抗體與酶融合技術(shù)研究[A];第十屆全國(guó)殺蟲微生物學(xué)術(shù)研討會(huì)暨全國(guó)生物農(nóng)藥與化學(xué)生物學(xué)研究與產(chǎn)業(yè)化會(huì)議論文摘要集[C];2006年
7 劉忠華;丁元生;胡忠義;;結(jié)核分枝桿菌38kD-16kD融合蛋白在大腸桿菌中的高效表達(dá)[A];2007年中國(guó)防癆協(xié)會(huì)全國(guó)學(xué)術(shù)會(huì)議論文集[C];2007年
8 祖東;徐春曉;黃國(guó)錦;姚立紅;陳愛君;朱宏建;劉沐榮;張智清;;TNFRI∶IgGFc融合蛋白基因的構(gòu)建及其在大腸桿菌中的高效表達(dá)[A];首屆長(zhǎng)三角科技論壇——長(zhǎng)三角生物醫(yī)藥發(fā)展論壇論文集[C];2004年
9 劉先俊;劉方欣;黎波;周輝云;王琴琴;;胸腺素α1與復(fù)合α干擾素融合蛋白的表達(dá)及其生物學(xué)活性[A];第九屆西南三省一市生物化學(xué)與分子生物學(xué)學(xué)術(shù)交流會(huì)論文集[C];2008年
10 楊燕凌;;酶(蛋白)融合技術(shù)研究[A];華東地區(qū)農(nóng)學(xué)會(huì)學(xué)術(shù)年會(huì)暨福建省科協(xié)第七屆學(xué)術(shù)年會(huì)農(nóng)業(yè)分會(huì)場(chǎng)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 記者 朱敏麗 通訊員 潘越;中國(guó)醫(yī)藥城首批融合蛋白試劑出口[N];泰州日?qǐng)?bào);2010年
2 吳紅梅;我省首批融合蛋白試劑出口美國(guó)[N];新華日?qǐng)?bào);2010年
3 金陵;融合蛋白試劑首次出口美國(guó)[N];中國(guó)醫(yī)藥報(bào);2010年
4 記者 毛黎;美開發(fā)出癌癥治療新技術(shù)[N];科技日?qǐng)?bào);2009年
5 常麗君;線粒體融合蛋白2決定細(xì)胞生死[N];科技日?qǐng)?bào);2013年
6 通訊員 沈季 記者 張兆軍;抗腫瘤融合蛋白進(jìn)入臨床試驗(yàn)[N];科技日?qǐng)?bào);2005年
7 記者 張曄 通訊員 劉寧春;一種有效治療冠心病的融合蛋白發(fā)現(xiàn)[N];科技日?qǐng)?bào);2009年
8 ;吉大抗腫瘤生物工程新藥進(jìn)入臨床試驗(yàn)[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2005年
9 毛磊;新型抗流感藥物有望面世[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
10 曹麗君;英研制出新型抗流感藥物[N];中國(guó)中醫(yī)藥報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 劉星;赭曲霉毒素A納米抗體的免疫學(xué)檢測(cè)性能及分子作用機(jī)理研究[D];南昌大學(xué);2015年
2 吳芩;Npu DnaE intein的結(jié)構(gòu)與機(jī)理研究和蛋白質(zhì)雙模式成像探針的制備及應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
3 錢凱;胰高血糖素樣肽-1與人血清白蛋白融合蛋白的設(shè)計(jì)與改造[D];江南大學(xué);2015年
4 司成業(yè);基于融合蛋白構(gòu)建智能超分子組裝體[D];吉林大學(xué);2016年
5 范季瀛;候選藥物重組融合蛋白VAS-TRAIL的研究[D];華東理工大學(xué);2016年
6 高冬芳;纖維素酶作為融合蛋白在大腸桿菌中的應(yīng)用及其分泌機(jī)制的研究[D];山東大學(xué);2016年
7 宋琳琳;Ub-HBcAg-CTP融合蛋白誘導(dǎo)特異性細(xì)胞毒性T淋巴細(xì)胞反應(yīng)的實(shí)驗(yàn)研究[D];上海交通大學(xué);2015年
8 劉寶平;家蠶表達(dá)的霍亂病毒B亞基融合蛋白防治1型糖尿病和阿爾茨海默癥研究[D];浙江大學(xué);2015年
9 周小虎;線粒體融合蛋白2在肝細(xì)胞肝癌中作用機(jī)制的研究[D];浙江大學(xué);2016年
10 陸遠(yuǎn);EGFR靶向單鏈抗體制備及介導(dǎo)siRNA內(nèi)化NSCLC細(xì)胞的生物學(xué)效應(yīng)[D];第四軍醫(yī)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 郭海強(qiáng);p53~(N239S)蛋白的表達(dá)與純化以及癌基因Kras~(G12D)與p53~(236S)促進(jìn)小鼠罹患肺癌[D];昆明理工大學(xué);2015年
2 胡湘云;新城疫病毒融合蛋白納米抗體的篩選與鑒定[D];西北農(nóng)林科技大學(xué);2015年
3 張銀閣;熒光標(biāo)記重組乙型肝炎病毒載體的構(gòu)建[D];河北醫(yī)科大學(xué);2015年
4 彭金秀;結(jié)核分枝桿菌持續(xù)感染致T細(xì)胞功能障礙的研究及融合蛋白AEMD和LT70的構(gòu)建[D];蘭州大學(xué);2015年
5 崔連振;利用重組凝集素篩選腫瘤相關(guān)蛋白及其功能研究[D];浙江理工大學(xué);2016年
6 耿小雪;對(duì)蝦白斑綜合征病毒囊膜蛋白VP28和VP26與細(xì)胞穿膜肽的融合蛋白在畢赤酵母中的組成型表達(dá)研究[D];中國(guó)海洋大學(xué);2015年
7 皇超英;NJA-1菌中DON降解酶基因的克隆、表達(dá)及特性研究[D];南京農(nóng)業(yè)大學(xué);2010年
8 張冬冬;IL-1RA-PEP融合蛋白功能及對(duì)缺血性再灌注腦損傷的治療作用研究[D];安徽醫(yī)科大學(xué);2016年
9 楊懿;長(zhǎng)效GLP-1-IgG2σ Fc融合蛋白的真核表達(dá)與生物活性鑒定[D];安徽醫(yī)科大學(xué);2016年
10 米夢(mèng)丹;透明顫菌血紅蛋白作為可視化標(biāo)簽在蛋白純化過程中的應(yīng)用[D];吉林大學(xué);2016年
,本文編號(hào):2202576
本文鏈接:http://sikaile.net/yixuelunwen/chuanranbingxuelunwen/2202576.html