商業(yè)視角下的網(wǎng)絡(luò)社區(qū)的用戶行為研究
發(fā)布時(shí)間:2018-03-26 01:08
本文選題:網(wǎng)絡(luò)社區(qū) 切入點(diǎn):用戶行為 出處:《山東師范大學(xué)》2012年碩士論文
【摘要】:自上世紀(jì)九十年代起,網(wǎng)絡(luò)社區(qū)隨著因特網(wǎng)的飛速發(fā)展而產(chǎn)生,其發(fā)展速度之快引起很多學(xué)者的注意。但是學(xué)者們對于網(wǎng)絡(luò)社區(qū)的定義始終沒有達(dá)成一致,多數(shù)著作都認(rèn)為網(wǎng)絡(luò)社區(qū)是指包括BBS論壇、貼吧、公告欄、群組討論、在線聊天、交友、個(gè)人空間、無線增值服務(wù)等形式在內(nèi)的網(wǎng)上交流空間,同一主題的網(wǎng)絡(luò)社區(qū)集中了具有共同興趣的訪問者。作為用戶,我們只要工作學(xué)習(xí)中需要用到網(wǎng)絡(luò),就會(huì)不可避免的成為某個(gè)或某些個(gè)網(wǎng)絡(luò)社區(qū)的成員。網(wǎng)絡(luò)社區(qū)的獨(dú)特優(yōu)勢及特性使得這個(gè)新生事物深入人心,網(wǎng)絡(luò)社區(qū)的形成對于用戶來說毫無疑問是有利的,不僅豐富了互聯(lián)網(wǎng)生活,更為用戶拓展了互聯(lián)網(wǎng)空間,加深了共同興趣方面的知識深度。 網(wǎng)絡(luò)社區(qū)的個(gè)數(shù)已經(jīng)呈指數(shù)級增長,面對如此激烈的競爭,研究網(wǎng)絡(luò)社區(qū)中的用戶行為對于社區(qū)運(yùn)營者來說是非常必要的,,首要原因就是商業(yè)利益。DCCI 2009-2010中國互聯(lián)網(wǎng)市場數(shù)據(jù)顯示,網(wǎng)絡(luò)社區(qū)廣告營收規(guī)模增速低于受眾規(guī)模增長,2010年年底中國互聯(lián)網(wǎng)社區(qū)論壇受眾規(guī)模為1.83億人,而到2011年年底這一數(shù)字大幅增加至2.45億人,凈增6200萬人,增幅達(dá)33.9%。由此可見,誰能夠爭取到這部分用戶,誰就能夠獲得更大的利益。因此,必須設(shè)置怎樣的吸引量來引起用戶的注意并留住用戶使之產(chǎn)生的行為對網(wǎng)站最為有利。這就需要對用戶的行為進(jìn)行透徹的了解和徹底的分析,課題的研究具有實(shí)際意義和必要性。 本文以QQ社區(qū)為研究對象,所設(shè)計(jì)問卷及調(diào)查分析均以QQ社區(qū)為模版。首先使用結(jié)構(gòu)方程建模的方法對于影響網(wǎng)絡(luò)社區(qū)盈利的因子進(jìn)行歸類,并對其產(chǎn)生的影響程度量化處理。結(jié)構(gòu)方程建模是一種目前管理學(xué)研究中常用的數(shù)據(jù)分析方法。它是一種與多元回歸分析關(guān)系密切,卻在原理和方法上有許多拓展的多變量數(shù)據(jù)分析方法。它涵蓋了多種原有的多變量數(shù)據(jù)分析方法,適用于定序、定類以及定距定比尺度,在管理、社會(huì)科學(xué)的實(shí)證研究中,逐漸成為與多元回歸分析并立的一種主要多變量數(shù)據(jù)分析方法。 根據(jù)用戶對調(diào)查問卷的反饋,統(tǒng)計(jì)各選項(xiàng)出現(xiàn)頻率,進(jìn)而使用關(guān)聯(lián)規(guī)則進(jìn)行數(shù)據(jù)挖掘以達(dá)到對用戶歸類的目的,繼而使用復(fù)雜網(wǎng)絡(luò)中的社團(tuán)劃分算法找到社區(qū)中的中心用戶和橋用戶,對各類用戶分別進(jìn)行討論,對于不同類型的用戶要采取不同的維護(hù)策略,最終使QQ社區(qū)建設(shè)擁有更多更好的經(jīng)濟(jì)基礎(chǔ)。 復(fù)雜網(wǎng)絡(luò)技術(shù)和數(shù)據(jù)挖掘技術(shù)都是比較成熟的技術(shù),把這兩種技術(shù)同時(shí)應(yīng)用在網(wǎng)絡(luò)社區(qū)的用戶行為分析上是一種比較新的研究和應(yīng)用。本文結(jié)合使用兩種人工智能技術(shù),為網(wǎng)絡(luò)社區(qū)中用戶行為的分析找到了一個(gè)新的角度,可以使網(wǎng)絡(luò)社區(qū)網(wǎng)站清晰了解具有何種特征的用戶會(huì)對網(wǎng)站產(chǎn)生正面影響以及影響的程度如何。
[Abstract]:Since the 1990s, with the rapid development of the Internet, the network community has attracted the attention of many scholars. However, scholars have never reached agreement on the definition of the network community. Most of the works think that the online community refers to online communication spaces, including BBS forums, posts, bulletin boards, group discussions, online chat, dating, personal space, wireless value-added services, and so on. The online community on the same topic brings together visitors of common interest. As users, we only need to use the network in our work and study. It will inevitably become a member of one or some network communities. The unique advantages and characteristics of the network community make this new thing deeply rooted in the hearts of the people. The formation of the network community is undoubtedly beneficial to the users. It not only enriches the Internet life, but also expands the Internet space and deepens the knowledge of common interest. The number of online communities has increased exponentially. In the face of such fierce competition, it is very necessary to study the behavior of users in the network community for community operators. The primary reason is that commercial interests. DCCI 2009-2010 China Internet market data show that the growth of advertising revenue in online communities is lower than the growth of audience size. At the end of 2010, the audience size of China Internet Community Forum was 183 million people. By the end of 2011, the number had increased significantly to 245 million, a net increase of 62 million, an increase of 33.9 percent. The behavior that must be set up to attract users' attention and retain them is most beneficial to the site. This requires a thorough understanding and thorough analysis of the user's behavior. The research of the subject has practical significance and necessity. This paper takes QQ community as the research object, designs the questionnaire and the investigation analysis takes the QQ community as the template. Firstly, classifies the factors that affect the profit of the network community by using the structural equation modeling method. Structural equation modeling is a data analysis method commonly used in management research at present. It is closely related to multivariate regression analysis. But there are many extended multivariate data analysis methods in principle and method. It covers many kinds of original multivariate data analysis methods, which are suitable for ordering, classifying, and distance determining scale, in the empirical research of management and social science. It has gradually become a main multivariate data analysis method parallel with multiple regression analysis. According to the feedback from the users to the questionnaire, the frequency of each option is counted, and then the association rules are used for data mining to achieve the purpose of classifying the users. Then the community partition algorithm in complex network is used to find the central users and bridge users in the community, and the different types of users are discussed, and different maintenance strategies are adopted for different types of users. Finally, QQ community construction has more and better economic base. The complex network technology and the data mining technology are both mature technologies. It is a relatively new research and application to apply these two technologies to the analysis of user behavior in the network community at the same time. A new angle is found for the analysis of user behavior in the network community, which can make the network community website clearly understand what kind of characteristics the users will have a positive impact on the website and the extent of the impact.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP393.09
【引證文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 李成;SNS中社交體驗(yàn)的設(shè)計(jì)研究[D];江南大學(xué);2013年
本文編號:1665662
本文鏈接:http://sikaile.net/wenyilunwen/guanggaoshejilunwen/1665662.html
最近更新
教材專著