機(jī)器翻譯的譯后編輯—一項(xiàng)以Trados為工具的《翻譯與網(wǎng)站本地化》(節(jié)選)翻譯報(bào)告
[Abstract]:In recent years, with the prosperity of translation market and the continuous progress of modern information technology, machine translation has achieved unprecedented development. At present, machine translation is mainly used in man-aided translation and machine-assisted translation. Human-assisted machine translation (HMT) refers to the post-editing of the translated text generated by the machine translation system. The role of interpreters in this process is to identify and correct errors in machine translation and to enhance the usability of machine translation. Post-translation editing plays an irreplaceable role in improving the quality of machine translation. Therefore, through this translation practice, this report discusses the common types of machine translation errors, and summarizes the corresponding post-translation editing solutions. As a student of localization, the author chooses Beglobal Community, a machine translation system, to deal with some of the content in Translation and Localization of the website, and edit it based on Trados, hoping to translate the text. In improving their post-translation editing skills, but also to allow more people to understand the localization of the site. As a scientific and technical text, this text has many terms and high repetition rate, which is convenient for machine translation and post-translation editing. Based on the previous analysis of the types of machine translation errors and combined with the post-translation editing practice, the author finds that post-translation editing should be carried out according to the order of vocabulary, syntax and discourse, and summarizes the common types of machine translation errors. At the lexical level, the frequency of mistranslation of vocabulary is the highest, the translator should modify the translation of the mistranslated vocabulary according to the context, and at the syntactic level, improper word order is the most common mistake, and the translator should adjust the word order according to the language habit of the target language. At the textual level, semantic jumbled is the biggest problem, and the translator should simplify the translation without changing the meaning of the original text. The author hopes to provide some reference for translators to improve the efficiency of post-translation editing through this practice.
【學(xué)位授予單位】:廣東外語外貿(mào)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:H315.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 施韻濤;塔多思(TRADOS)和企業(yè)信息化[J];中國(guó)科技翻譯;2000年04期
2 魯?shù)さ?韓戈玲;;Trados在翻譯團(tuán)隊(duì)中的應(yīng)用[J];語文學(xué)刊(外語教育教學(xué));2013年11期
3 李菲;塔多思(TRADOS)攜手神州數(shù)碼[J];中國(guó)科技翻譯;2001年03期
相關(guān)碩士學(xué)位論文 前8條
1 付思寒;機(jī)器翻譯的譯后編輯—一項(xiàng)以Trados為工具的《翻譯與網(wǎng)站本地化》(節(jié)選)翻譯報(bào)告[D];廣東外語外貿(mào)大學(xué);2017年
2 劉芳芳;外事文本機(jī)器翻譯譯文差異的量化研究[D];北京第二外國(guó)語學(xué)院;2017年
3 方菲;商務(wù)英語機(jī)器翻譯漢譯錯(cuò)誤分析[D];廣東外語外貿(mào)大學(xué);2017年
4 李榮蓉;漢英在線機(jī)器翻譯研究[D];南昌大學(xué);2017年
5 劉笛;融合多語編碼信息的神經(jīng)機(jī)器翻譯研究[D];哈爾濱工業(yè)大學(xué);2017年
6 謝婧;翻譯單位研究:機(jī)器翻譯路徑[D];江南大學(xué);2017年
7 周博;譯后編輯與人工翻譯過程中認(rèn)知努力的對(duì)比實(shí)證研究[D];廣東外語外貿(mào)大學(xué);2017年
8 劉禹;面向多語種的新聞翻譯及信息抽取系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2017年
,本文編號(hào):2429739
本文鏈接:http://sikaile.net/waiyulunwen/yingyulunwen/2429739.html