聯(lián)合信息在價(jià)值驅(qū)動(dòng)注意捕獲中的作用
[Abstract]:Priority attention to value-related stimuli is adaptive and can avoid loss and maximize reward. In previous studies, the characteristics of reward association were all single visual features related to task (e.g., color, shape, direction). However, the choice of attention for a certain feature was regulated by spatial position. When reward association, task It is not clear how the relevant features are regulated by spatial information. In order to explore this issue, this study uses joint information (i.e. the combination of task-related color features and spatial information) to predict rewards and examine value-driven attention capture. The purpose of this study was to explore the role of spatial location information and color and spatial position information in value-driven attention capture. The same stimulus and low reward in two adjacent locations were linked and designed for 2 (reward level: high, low) *2 (stage: 1, 2) subjects. The results showed that attention could be captured only when distractors appeared in the neutral position between high and low reward positions or between two high reward positions. In the training stage, two adjacent positions were connected with high and low rewards (i.e. removing the neutral position between the two high reward positions) and 2 (reward level: high, low) *2 (stage: 1, 2) subjects were designed. In the test stage, the single factor design (distraction position: no appearance, high) was performed. The results showed that only when distractors appeared in high reward positions could attention be captured. The results supported the overall effect. Experiment 3 examined the interaction between color and location information in value-driven attention capture. Twenty-four subjects participated in the experiment. In the training stage, the color and position were combined to predict the reward, which was 2 (reward level: high, low)*2 (stage: 1, 2). In the test stage, the presentation of distraction was 2 (color: high reward color, low reward color)*5 (position: high reward position, low reward position, neutral position between high reward, low reward position). The results showed that attention could be captured only when the high reward color appeared in the neutral position between the high reward position and the high reward position. Experiment 4 explored the value-driven attention capture effect based on spatial scenarios. Twenty-four subjects participated in the experiment. The results showed that attention could be captured only when distractors appeared in high-reward scenarios. Experiment 5 examined the interaction between color and spatial joint information in value-driven attention capture. 24 subjects participated in the experiment. During the training phase, one scenario was used. Color A was associated with a high reward, while color B in another scenario was associated with a low reward, and was designed for 2 (reward level: high, low) *6 (stage: 1-6). The test phase was 3 (color: high reward color, low reward color, distraction free)*3 (scenario: high reward scenario, low reward scenario, neutral scenario). Design. The results showed that high-reward colors captured attention in all scenarios. After the experiment of study 1 and study 2, subjects were asked to complete the reward-association questionnaire. The experimental results showed that most of the subjects could be aware of the reward-association rule explicitly during the training phase. The role and mechanism of value-driven attention capture included two experiments. Experiment 6 examined whether the reward-linked task-independent color stimuli as prominent distractors could capture attention. Parity Consistency of Side and Target Numbers: Consistency, Inconsistency. The test phase was designed as a single factor (distractors present: absence, high-reward distractors present, low-reward distractors present). The results showed that, when high-reward colors appear as prominent distractors, the range is larger than that of low-reward colors. Experiments 7 examined whether the task-independent color stimuli of reward-link could capture attention as non-prominent distractors, and whether the value-driven attention-capture effect was due to spatial transfer or filtering costs. 18 participants participated in the experiment. The experimental setup of training and testing phases The results of behavioral data showed that the color distractors associated with high rewards could still capture attention when they were no longer highlighted. ERPs data showed that the distractors associated with high rewards did not induce N2pc components. The following conclusions can be drawn: (1) The reward predictive information is sufficient and necessary for the production of value-driven attention capture. The reward predictive information can be task-related, such as the color and location of the target, or task-independent, such as the scene in which the target stimulus exists or the distracted stimulus features unrelated to the target. Value-driven attention capture effect can be produced by measuring and distinguishing different amount of rewards. (2) Value-driven attention capture produced by location has a certain generalization, which shows that distractors can also produce value-driven attention capture effect when they appear in the neutral position between two high rewards. This generalization is due to training. (3) When color and position were combined to predict reward, individuals were able to "bind" the joint features of color and position to establish a link with reward at the training stage; the link established at the training stage could not be generalized to some features. (4) When color and scene were combined to predict reward. In the training stage, most of the subjects were able to perceive the association between information and reward, and the individuals were able to learn the explicit relationship between information and reward. (6) The distracted stimulus characteristics associated with high reward in the training stage were tested. The results of ERPs show that attention capture is not caused by spatial shift of attention, but by filtering cost.
【學(xué)位授予單位】:天津師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:B842.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐玉珍,李文馥;對(duì)幼兒園小班兒童進(jìn)行顏色教學(xué)的探索[J];心理發(fā)展與教育;1988年02期
2 陳曦;俄漢顏色詞語的非顏色意義[J];中國(guó)俄語教學(xué);1995年01期
3 陳紅;;俄漢顏色詞對(duì)比初探[J];黑河教育;2011年11期
4 趙國(guó)英 ,李華;顏色傳輸技術(shù)在影視制作和處理中的應(yīng)用[J];影視技術(shù);2003年06期
5 傅治夷;漢英顏色詞在使用上的比較[J];欽州學(xué)刊;1998年03期
6 崔姍姍;;俄漢語顏色詞“黑/白”隱喻對(duì)比分析[J];林區(qū)教學(xué);2014年02期
7 張健;;“紅”語義隱喻認(rèn)知分析[J];渤海大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2012年05期
8 張積家;梁文韜;黃慶清;;大學(xué)生顏色詞聯(lián)想研究[J];語言文字應(yīng)用;2006年02期
9 何冰;;淺談?lì)伾~的翻譯——顏色詞與語境[J];科技信息;2009年04期
10 張淑慧;;漢英顏色詞文化意義跨語言共性的認(rèn)知闡釋[J];黑龍江教育學(xué)院學(xué)報(bào);2009年06期
相關(guān)會(huì)議論文 前10條
1 崔翔宇;許百華;;顏色特征信息對(duì)客體檔案保持的影響[A];第十二屆全國(guó)心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2009年
2 朱嘉瓏;;俄語顏色詞意義淺析[A];福建省外國(guó)語文學(xué)會(huì)2009年年會(huì)暨學(xué)術(shù)研討會(huì)論文集[C];2009年
3 委福祥;曲彥平;苑瑋琦;;鍍層腐蝕形貌圖像顏色特征的提取與分析[A];首屆信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2003年
4 黃勃;王寬全;李乃民;;基于像素的舌象顏色分析[A];第四次全國(guó)中西醫(yī)結(jié)合診斷學(xué)術(shù)研討會(huì)論文集[C];2010年
5 翟文鵬;吳愛國(guó);杜春燕;;基于煙霧顏色特征和運(yùn)動(dòng)特征分析的視頻煙霧探測(cè)[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
6 吳成玉;邰曉英;趙杰煜;;基于顏色特征的圖像檢索方法與實(shí)現(xiàn)[A];第二十一屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2004年
7 朱偉濤;劉士榮;邱雪娜;;基于顏色和粒子濾波的視頻目標(biāo)檢測(cè)與跟蹤[A];PCC2009—第20屆中國(guó)過程控制會(huì)議論文集[C];2009年
8 郭忠偉;李洪峰;;C~3 I系統(tǒng)中基于顏色特征的戰(zhàn)場(chǎng)圖像快速檢索[A];中國(guó)造船工程學(xué)會(huì)電子技術(shù)學(xué)術(shù)委員會(huì)2006學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年
9 林名強(qiáng);張陳斌;陳宗海;;運(yùn)動(dòng)與顏色特征相融合的目標(biāo)跟蹤算法[A];系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第15卷)[C];2014年
10 郝婷;孟正大;;機(jī)器人在復(fù)雜環(huán)境下的火炬識(shí)別[A];2005全國(guó)自動(dòng)化新技術(shù)學(xué)術(shù)交流會(huì)論文集(二)[C];2005年
相關(guān)重要報(bào)紙文章 前5條
1 董嵐;藍(lán)色藍(lán)寶石之顏色分級(jí)[N];中國(guó)黃金報(bào);2004年
2 成都監(jiān)測(cè)臺(tái) 吳或;基于顏色特征的網(wǎng)絡(luò)不良視頻檢測(cè)技術(shù)研究[N];電子報(bào);2013年
3 張仁山;翡翠名稱的特征[N];中國(guó)礦業(yè)報(bào);2003年
4 白毅;中科院上海神經(jīng)所:發(fā)現(xiàn)果蠅具有基于經(jīng)驗(yàn)的學(xué)習(xí)能力[N];中國(guó)醫(yī)藥報(bào);2007年
5 劉占軍;“紅藍(lán)黃綠”任我搜[N];中國(guó)電腦教育報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 王娟;基于計(jì)算機(jī)視覺的棉花干旱診斷研究[D];石河子大學(xué);2014年
2 白雪峰;足球視頻內(nèi)容分析關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
3 陸榮秀;基于顏色特征的鐠/釹萃取過程組分含量檢測(cè)方法研究[D];南昌大學(xué);2015年
4 遲瑩瑩;新舊客體顏色比例對(duì)預(yù)覽效應(yīng)的影響機(jī)制[D];東北師范大學(xué);2016年
5 劉麗;聯(lián)合信息在價(jià)值驅(qū)動(dòng)注意捕獲中的作用[D];天津師范大學(xué);2017年
6 陳雁;紡織服裝顏色風(fēng)格的原理與應(yīng)用[D];蘇州大學(xué);2002年
7 肖學(xué)中;基于實(shí)例的顏色處理新技術(shù)研究[D];上海交通大學(xué);2009年
8 戴天虹;基于計(jì)算機(jī)視覺的木質(zhì)板材顏色分類方法的研究[D];東北林業(yè)大學(xué);2008年
9 蔣孝鋒;服裝顏色明度對(duì)人情感的影響機(jī)制[D];蘇州大學(xué);2011年
10 張可為;基于顏色標(biāo)記圖像著色的關(guān)鍵技術(shù)研究[D];中南大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 趙穎;有關(guān)歷代主要字詞典所收顏色詞的系統(tǒng)研究[D];山西師范大學(xué);2010年
2 許媛;洱海藍(lán)藻爆發(fā)識(shí)別的研究及工程實(shí)現(xiàn)[D];昆明理工大學(xué);2015年
3 沈新寧;基于顏色特征的快速圖像檢索技術(shù)的研究[D];復(fù)旦大學(xué);2014年
4 張晶晶;基于高光譜成像技術(shù)的杏成熟度判別研究[D];山西農(nóng)業(yè)大學(xué);2015年
5 韓大洋;提高人眼匹配顯示器到投影儀顏色再現(xiàn)精度的方法研究[D];云南師范大學(xué);2015年
6 唐欽;基于紋理和顏色特征的植物葉片識(shí)別方法研究[D];浙江大學(xué);2015年
7 任天威;基于stm32微處理器的顏色采集與分析[D];黑龍江大學(xué);2015年
8 許世杰;基于色差模型的色盲輔助矯正方法研究[D];西安電子科技大學(xué);2014年
9 周國(guó)慶;基于視覺顯著性的圖像目標(biāo)檢測(cè)設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
10 王婧;紡織品顏色分類及色差檢測(cè)系統(tǒng)研究[D];西安工程大學(xué);2015年
,本文編號(hào):2190743
本文鏈接:http://sikaile.net/shoufeilunwen/rwkxbs/2190743.html