天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

極大—加代數(shù)上Riccati方程及其應用

發(fā)布時間:2017-06-10 15:03

  本文關鍵詞:極大—加代數(shù)上Riccati方程及其應用,,由筆耕文化傳播整理發(fā)布。


【摘要】:離散代數(shù)Riccati方程在現(xiàn)代控制理論中占有重要的地位.由于Riccati方程在實際生活中的重要應用,很多學者對該方程的相關結論都進行了較系統(tǒng)的研究.另外,極大-加代數(shù)在離散系統(tǒng)與控制領域中也有重要的應用.制造、通信、交通等系統(tǒng)中的許多問題都可以用極大-加代數(shù)方法來研究.本文在極大-加代數(shù)中研究Riccati方程,給出了一類Riccati方程的定義.為了更好地研究極大-加代數(shù)中Riccati方程的性質,我們又定義了極大-加代數(shù)中Lyapunov方程等其它相關的概念.本文借助對極大-加代數(shù)Lyapunov方程的探究,討論了極大-加代數(shù)Riccati方程的可解性問題.得到了極大-加代數(shù)Riccati方程有對稱解的一個充分條件和解的解析表達式,并且在極大-加代數(shù)Riccati方程有對稱解且解的對角線元素都是非零的條件下,給出了弱判別矩陣特征值的取值范圍.接著證明了極大-加代數(shù)Riccati方程兩個解的和也是方程的一個解.最后我們探索Riccati方程在一類極大-加代數(shù)離散線性系統(tǒng)最優(yōu)控制中的應用,給出了方程的解與相應系統(tǒng)的零輸出空間之間的關系.從而通過研究方程的解找到一類極大-加離散線性系統(tǒng)的最小消耗指數(shù).
【關鍵詞】:極大-加代數(shù) Riccati方程 Lyapunov方程 特征值 零輸出空間
【學位授予單位】:河北師范大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O175
【目錄】:
  • 摘要4-5
  • Abstract5-7
  • 引言7-11
  • 第一章 預備知識11-17
  • 1.1 極大?加代數(shù)11-14
  • 1.2 實代數(shù)離散Riccati方程14-17
  • 第二章 極大?加代數(shù)Riccati方程17-29
  • 2.1 極大?加代數(shù)Riccati方程17-18
  • 2.2 其它相關定義18-19
  • 2.3 極大?加代數(shù)Riccati方程的可解性19-24
  • 2.4 極大?加代數(shù)Riccati方程的解的性質24-29
  • 第三章 最優(yōu)控制29-33
  • 3.1 極大?加代數(shù)中的最優(yōu)消耗29
  • 3.2 離散事件系統(tǒng)的最優(yōu)控制29-33
  • 結論33-35
  • 參考文獻35-39
  • 后記39

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 馮錄祥,魏列萍;一類Riccati方程的通積分[J];寶雞文理學院學報(自然科學版);2000年01期

2 馮錄祥,魏列萍;Riccati方程可積的若干充分條件[J];咸陽師范?茖W校學報;2000年03期

3 余國棟;一類Riccati型方程周期解的存在性[J];貴州教育學院學報(自然科學);2002年02期

4 馮錄祥;一類Riccati方程的推廣[J];咸陽師范學院學報;2003年04期

5 ;Relationship Among Solutions of a Generalized Riccati Equation[J];Communications in Theoretical Physics;2007年10期

6 馮錄祥;;一類Riccati方程的通積分[J];渭南師范學院學報;2007年02期

7 趙懷忠;THE PERIODIC SOLUTIONS OF RICCATI EQUATION WITH PERIODIC COEFFICIENTS[J];Chinese Science Bulletin;1990年23期

8 申建華;Riccati方程的若干可積類型[J];工科數(shù)學;1992年03期

9 ;A new integrability condition for Riccati differential equation[J];Chinese Science Bulletin;1998年05期

10 巴英;推廣的Riccati方程可積的若干充分條件[J];高等函授學報(自然科學版);1999年04期

中國重要會議論文全文數(shù)據(jù)庫 前10條

1 ;A Class of Integrable Riccati Equations[A];第十一屆全國非線性振動學術會議暨第八屆全國非線性動力學和運動穩(wěn)定性學術會議論文摘要集[C];2007年

2 ;The Riccati Differential Equation of Game Type[A];第二十四屆中國控制會議論文集(上冊)[C];2005年

3 ;A Class of Integrable Riccati Equations[A];第十一屆全國非線性振動學術會議暨第八屆全國非線性動力學和運動穩(wěn)定性學術會議論文集[C];2007年

4 傅詒輝;王書寧;戴建設;劉小也;;一類代數(shù)Riccati方程的顯示代數(shù)解[A];1994中國控制與決策學術年會論文集[C];1994年

5 ;A Class of Integrable Riccati Equations and Applications to Optimal Control[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年

6 ;On Common Solutions of Riccati Inequalities:for Plannar Case[A];第二十七屆中國控制會議論文集[C];2008年

7 張國峰;王廣雄;胡建昆;;離散H~∞控制中Riccati代數(shù)方程解法研究[A];1993中國控制與決策學術年會論文集[C];1993年

8 ;On Stability of Random Riccati Equations[A];1998年中國控制會議論文集[C];1998年

9 李靜;馮志剛;;基于矩陣Riccati方程解的空間交會最優(yōu)制導律設計[A];全國第二屆信號處理與應用學術會議?痆C];2008年

10 鐘萬勰;;非對稱Riccati方程基于本征解的分析解[A];“力學2000”學術大會論文集[C];2000年

中國博士學位論文全文數(shù)據(jù)庫 前1條

1 劉保國;一維不定參數(shù)結構系統(tǒng)的攝動Riccati傳遞矩陣方法及其應用[D];重慶大學;2002年

中國碩士學位論文全文數(shù)據(jù)庫 前10條

1 王艷沛;連續(xù)耦合代數(shù)Riccati矩陣方程解的估計[D];湘潭大學;2015年

2 王躍堂;耦合代數(shù)Riccati矩陣方程解的擾動估計[D];湘潭大學;2015年

3 田貴月;極大—加代數(shù)上Riccati方程及其應用[D];河北師范大學;2016年

4 鄭波;Riccati方程可積條件的探討[D];西南大學;2009年

5 劉暉;離散和連續(xù)代數(shù)Riccati方程解的估計[D];湘潭大學;2013年

6 劉建明;一類代數(shù)Riccati方程的解的存在性[D];廈門大學;2009年

7 查亞玲;離散代數(shù)Riccati方程及其耦合方程解的特征值估計[D];湘潭大學;2012年

8 肖玲莉;隨機代數(shù)Riccati方程的擾動分析[D];大連理工大學;2014年

9 王明磊;隨機代數(shù)Riccati方程的數(shù)值解法[D];大連理工大學;2009年

10 張見軒;奇異型隨機Riccati方程[D];復旦大學;2011年


  本文關鍵詞:極大—加代數(shù)上Riccati方程及其應用,由筆耕文化傳播整理發(fā)布。



本文編號:438869

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/438869.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶15704***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com