植物高通量基因型和表型數(shù)據(jù)計算分析及工具開發(fā)
[Abstract]:Group studies include genomics, proteomics, transcriptome, epigenomics, and metabolism. The entire phenotype analysis method assisted crop breeding, forming a new group learning method-Phenotypic group study (including high-throughput analysis of the biophysical and biochemical characteristics of the tissue). Genomics and phenotypic groups are two important branches of the study, which are at the ends of multiple groups of studies. One central goal of biology today is to establish a complete functional connection between the genome and the phenotypic group, which we call genotype phenotypes. Cell systems are products involved in the expression of genes involved in the transcription regulation of tens of thousands of genes. Therefore, it is necessary to clarify the mechanism of transcriptional regulation network, not only to solve the mechanism of cell work but also to find new targets for biological molecules. In genomics research, it is challenging to predict gene regulation networks from expression data. At present, many methods have been developed (from supervisory learning to non-supervised learning) to address this challenge. wherein the most promising is a support vector machine-based method (SVM). We need to compare their predicted accuracy with a comprehensive analysis using different core-based supervised learning SVM methods under different biological experimental conditions and network sizes. Therefore, based on SVM, we developed a method called CompareSVM to compare the reasoning methods of different gene regulation networks. Through the CompareSVM, we use different SVM kernel methods to simulate different size gene chips and second-generation sequencing data sets. The results of the feedback from the CompareSVM show that the accuracy of the reasoning method depends on the experimental conditions and the nature of the network size. The limitations of plant phenotype studies have limited our analysis of quantitative shape inheritance, especially those related to yield and stress resistance (e.g., increased yield potential, improved early resistance, heat resistance, and nutrient efficiency, etc.). Nowadays, the development of effective high-throughput phenotype analysis platform is still in bottleneck period. Progress in biology, sensors, and high-performance computing, however, is paving the way for this. High-throughput phenotype analysis is an important technique to analyze the phenotypic components of plants. In order to quantify plant growth and phenotypic traits, effective image processing performance and feature extraction are essential in the analysis. Therefore, for a variety of different plant species, based on the real-time collection of different ranges of image data, it is necessary to develop a system that supports transmission of images from different acquisition environments and can perform image analysis on a large scale. At present, a high-throughput typing platform that captures widespread and in-depth phenotypic data of plants has been developed, which advances our insights into plant growth and plant response climate and environmental changes. Based on these developments, more and more efficient crop genetic improvements meet the needs of future generations. In plant phenotypic analysis, digital image analysis of parametric evaluation of plant phenotypes in a non-destructive manner is a very important task. some screening systems based on different requirements for picture analysis are now developed and partly commercially available. In the study of phenotypic groups, the segmentation and identification of plant organs, especially the independent leaves, is one of the greatest difficulties based on the phenotypic analysis of picture plants. The full-automatic phenotypic analysis system can collect plant pictures continuously, but also brings problems such as high labor force, high cost and high maintenance cost. So we need a more flexible system to adapt to different plant backgrounds, plant lighting, and similar changes. As a result, we have developed an ImageJ plug-in-HTPPA that can be acquired free of charge by expanding the art photo processing algorithm library of imageJ, and a number of utilities that can be developed simultaneously with the HTPPA to explore a high-throughput phenotype analysis. By improving the segmentation of plants and individual leaves using plant structures and morphological features, we can advance large-range high-throughput phenotype analysis and establish linkages between genotypes and phenotypes. Genomics and Phenotypic group studies are two of the most important basic branches of science and technology, and are two endpoints of multi-group learning. Advances in science and technology have increased the breadth of available sets of learning data, from full-gene sequencing data to a wide range of transcription groups, methylation groups, and metabolic group data. The key objective is to establish a comprehensive functional connection between the genotype and phenotype by defining an effective model for predicting phenotypic traits and results. Genetic and phenotypic data from high flux and high dimensions can be processed using the whole genome association analysis (GWAS) method, and a gray area exists from which the genotype and phenotype can be found. The application of GWAS and its similar methods and the integration of multiple sets of learning data began to find the contribution of genotypic variations to phenotypic diversity. It is of vital importance to integrate a wide range of group learning data through the use of a system biology approach, which can further bridge genomics and phenotypic groups and ultimately make the phenotype accurate based on the contribution of the genotype
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:Q943.2;Q811.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金碧輝;;基因組學(xué) 數(shù)據(jù)聚焦分析[J];科學(xué)觀察;2006年02期
2 ;2013國際基因組學(xué)大會將在青島召開[J];遺傳;2013年05期
3 于軍;;基因組學(xué)的未來[J];科學(xué)世界;2013年08期
4 葛頌 ,本刊編輯部;基因組學(xué)和生命的進(jìn)化[J];科學(xué)中國人;2004年05期
5 李偉,印莉萍;基因組學(xué)相關(guān)概念及其研究進(jìn)展[J];生物學(xué)通報;2000年11期
6 易家康;人類以外的基因組[J];世界科學(xué);2000年10期
7 楊煥明;;基因組學(xué) 中國科學(xué)家談科學(xué)[J];科學(xué)觀察;2006年02期
8 楊立英;;基因組學(xué)領(lǐng)域演進(jìn)的科學(xué)計量研究[J];科學(xué)觀察;2007年01期
9 張輝;孫坤;丁蘭;梁前進(jìn);;關(guān)于開設(shè)“基因組學(xué)”課程的探討[J];生物學(xué)通報;2008年08期
10 ;2009年國際基因組學(xué)大會將在北京召開[J];遺傳;2009年06期
相關(guān)會議論文 前10條
1 趙一;;基因組學(xué)時代的中藥研究[A];2004年中國西部藥學(xué)論壇論文匯編(上冊)[C];2004年
2 賀林;;基因組學(xué)對我們概念的沖擊和帶來的思考[A];中國遺傳學(xué)會功能基因組學(xué)研討會論文集[C];2006年
3 刁現(xiàn)民;;后基因組時代的生命科學(xué)及現(xiàn)代農(nóng)業(yè)質(zhì)疑[A];新觀點(diǎn)新學(xué)說學(xué)術(shù)沙龍文集2:生命科學(xué)的思考與暢想[C];2006年
4 何晨陽;;基因組學(xué)新技術(shù)在植物保護(hù)和病蟲害研究中的應(yīng)用[A];科技創(chuàng)新與綠色植保——中國植物保護(hù)學(xué)會2006學(xué)術(shù)年會論文集[C];2006年
5 ;醫(yī)學(xué)基因組學(xué)國家重點(diǎn)實(shí)驗(yàn)室[A];培育生物產(chǎn)業(yè),,發(fā)展綠色經(jīng)濟(jì)——第五屆中國生物產(chǎn)業(yè)大會·2011基因科學(xué)與產(chǎn)業(yè)發(fā)展論壇會刊[C];2011年
6 楊煥明;;基因組學(xué)與21世紀(jì)的醫(yī)學(xué)[A];第十二次全國醫(yī)學(xué)遺傳學(xué)學(xué)術(shù)會議論文匯編[C];2014年
7 彭瑞驄;;新世紀(jì)醫(yī)學(xué)發(fā)展值得關(guān)注的兩個問題[A];中國自然辯證法研究會第五屆全國代表大會文件[C];2001年
8 魏爾清;;后基因組時代藥理學(xué)研究趨向[A];第七次全國莨菪類藥研究學(xué)術(shù)交流會論文匯編[C];2001年
9 趙國屏;;基因組學(xué)與社會經(jīng)濟(jì)的和諧發(fā)展[A];培育生物產(chǎn)業(yè),發(fā)展綠色經(jīng)濟(jì)——第五屆中國生物產(chǎn)業(yè)大會·2011基因科學(xué)與產(chǎn)業(yè)發(fā)展論壇會刊[C];2011年
10 呂占軍;王秀芳;謝英;段肖翠;;醫(yī)學(xué)基因組學(xué)教學(xué)中創(chuàng)新和實(shí)踐能力的培養(yǎng)[A];高等院校遺傳學(xué)教學(xué)改革探索[C];2010年
相關(guān)重要報紙文章 前10條
1 記者 賈少強(qiáng) 通訊員 王靜思;國際基因組學(xué) 大會在深召開[N];深圳商報;2010年
2 編譯 李勇;癌癥基因組學(xué)的未來[N];醫(yī)藥經(jīng)濟(jì)報;2014年
3 記者 畢國學(xué) 通訊員 時紅偉 雷云;深圳全基因組設(shè)計育種研究領(lǐng)先全國[N];深圳商報;2014年
4 ;疾病基因組學(xué)將成“主旋律”[N];中國醫(yī)藥報;2002年
5 中科院院士、中科院北京基因研究所研究員 楊煥明;基因組學(xué)的突破[N];人民政協(xié)報;2008年
6 記者 劉傳書;中國首次提出“人類泛基因組”概念[N];科技日報;2009年
7 記者 李嫦娟 通訊員 蔣婷燕;第四屆國際基因組學(xué)大會在深召開[N];廣東科技報;2009年
8 記者 易運(yùn)文;我青年學(xué)者首次提出“人類泛基因組”概念[N];光明日報;2009年
9 特約記者 鐵錚;毛白楊基因組序列圖譜繪就[N];中國花卉報;2011年
10 記者 過國忠 通訊員 生永明;作物基因組學(xué)與育種研討會在揚(yáng)州大學(xué)召開[N];科技日報;2012年
相關(guān)博士學(xué)位論文 前5條
1 王一;群體基因組學(xué)若干模型與算法[D];復(fù)旦大學(xué);2010年
2 白義春;CRISPR/Cas9技術(shù)在雞、豬基因組編輯研究中的應(yīng)用及一種新型基因無縫編輯技術(shù)的開發(fā)研究[D];西北農(nóng)林科技大學(xué);2016年
3 Zeeshan Gillani;植物高通量基因型和表型數(shù)據(jù)計算分析及工具開發(fā)[D];浙江大學(xué);2016年
4 謝婷;甘藍(lán)型油菜3D基因組學(xué)的初步研究與應(yīng)用[D];華中農(nóng)業(yè)大學(xué);2016年
5 趙永兵;泛基因組學(xué)分析方法開發(fā)及應(yīng)用[D];中國科學(xué)院北京基因組研究所;2014年
相關(guān)碩士學(xué)位論文 前10條
1 黃震震;基于整合的TCGA數(shù)據(jù)庫探索基因組學(xué)與臨床數(shù)據(jù)關(guān)系[D];浙江大學(xué);2016年
2 龍志成;基于基因組重測序技術(shù)研究蓮兩生態(tài)型的適應(yīng)性遺傳分化[D];中國科學(xué)院研究生院(武漢植物園);2016年
3 樊軍鵬;油菜磷高效性狀的全基因組關(guān)聯(lián)分析[D];華中農(nóng)業(yè)大學(xué);2016年
4 王蒙召;基因組重測序基礎(chǔ)上的早實(shí)枳與普通枳部分差異基因比較分析[D];華中農(nóng)業(yè)大學(xué);2016年
5 汪金兔;鯉第四輪全基因組復(fù)制時間及鯉CC型趨化因子的研究[D];上海海洋大學(xué);2012年
6 霍永霞;群體基因組學(xué)方法探討人類與中國觀賞雞骨骼系統(tǒng)進(jìn)化遺傳機(jī)制[D];安徽大學(xué);2015年
7 孫秋實(shí);基于串聯(lián)質(zhì)譜數(shù)據(jù)的蛋白質(zhì)—基因組學(xué)方法研究[D];北京交通大學(xué);2015年
8 譚珍連;用基因組改組技術(shù)提高白地霉的內(nèi)酯化脂肪酶活性的研究[D];廣西大學(xué);2007年
9 項(xiàng)迎霞;空間飛行誘發(fā)水稻基因組不穩(wěn)定序列特征分析[D];大連海事大學(xué);2010年
10 張清;運(yùn)動單胞菌基因組尺度代謝網(wǎng)絡(luò)模擬[D];天津大學(xué);2010年
本文編號:2263615
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2263615.html