SIRT2基因啟動子在心肌梗死病人中遺傳和功能變異研究
[Abstract]:Background: acute myocardial infarction (AMI) is a manifestation of acute attack of coronary artery disease (CAD). It is mainly caused by the rupture of unstable atherosclerotic plaque. The pathological mechanism of atherosclerosis is known to be mainly involved in many metabolic processes, such as cell inflammation, oxygenation stress, platelet function, and so on. The whole genome association study (GWAS) found that the occurrence of CAD is associated with genetic variation, but these genetic variations can only explain 10% of the occurrence of CAD. Low frequency and rare genetic variation may be associated with the occurrence of coronary heart disease that.SIRT2 belongs to a member of the sirtuin family, which is mainly in mammals, and is highly conservative. The third class histone deacetylase.SIRT2 of nicotinamide adenine adenine dinucleotide (NAD+) plays an important role in genomic stability, metabolism, inflammation, oxidative stress, autophagy, and the regulation of platelet and vascular endothelial function. In the process of gene expression, promoter can regulate the change of gene expression level. Therefore, this study It is presumed that the genetic variation of SIRT2 gene may have an important role in the pathogenesis of AMI. To explore the relationship between the occurrence of AMI and the SIRT2 gene by studying the changes in the gene expression level of the genetic variation in the promoter region of the SIRT2 gene, the purpose of this study is to explore the low frequency inheritance by sequencing in two groups of people. The effect of mutation and single nucleotide polymorphism (SNPs) on the incidence of AMI and control groups; secondly, by constructing a pGL3-basic reporter vector carrying the SIRT2 gene and the promoter of the genetic variation site, the change of gene expression level caused by genetic variation was detected. The study on the genetic and functional variation of the promoter of the SIRT2 gene was carried out. The role of SIRT2 gene in the pathogenesis of AMI was investigated. 1. The study was finally included in 375 new AMI cases and 377 healthy controls. The clinical baseline data of two groups of people were collected and the whole genome DNA.2 was extracted respectively. The primers were designed according to the SIRT2 gene promoter sequence provided by the NCBI gene database, and the PCR method was used. The target fragment of SIRT2 gene promoter was amplified and sequenced to analyze the gene sequence variation.3 of SIRT2, and the sequence of mutations of the promoter sequence and the wild type target gene fragment of the SIRT2 gene were constructed to the pGL3-basic reporter gene carrier, and the constructed pGL3-basic reporter gene vector and the internal reference plasmid pRL-TK were used to pass the lipid. The plastids were co transfected with HEK293 and H9c2 cells, and the relative luciferase activity of SIRT2 promoter was analyzed by Promega double fluorescent reporter gene analyzer, and the changes of gene promoter transcriptional activity were detected by genetic variation. The results were as follows: 1, 17 DNA sequences (DSVs), including 5 SNPs loci, were found by sequencing. 3 new heterozygous DSVs, g.38900270AG, g.38899853CT and g.38900888_91delTAAA, were found only in 3 AMI patients, which were not found in the normal control group. 5 new DSVs were found in the control group, g.38900562CT, g.38900413AC, g.38900030GA, g.38899925AC and g.38899852CT in the AMI group. The remaining 4 new heterozygous mutation sites and 5 SNPs were found in the control group and the AMI group, but there was no statistical significance (P0.05).2. The pGL3-basic reporter gene carrier was successfully constructed, pGL3-WT (wild type SIRT2 gene promoter), pGL3-38900907G, pGL3-38900888_91del, pGL3-38900562T, pGL3-38900413C, pGL3-38900291G, etc. 38900030A, pGL3-38899925C, pGL3-38899903C, pGL3-38899853T, pGL3-38899852T and pGL3-38899781G.3 were transiently transfected into HEK293 and H9c2 cells in vitro by liposomes to detect the relative luciferase expression activity of the SIRT2 gene promoter with different DSVs. (1) in HEK293 cells, only in the AMI group could affect the promoter of the gene promoter. Transcriptional activity: g.38900888_91delTAAA (P0.05) and g.38900270AG (P0.01) significantly reduced the transcriptional activity of the SIRT2 gene promoter, and g.38899853CT significantly increased the transcriptional activity of the SIRT2 gene promoter (P0.01). Only 5 DSVs (g.38900562CT, g.38900413AC, g.38900030GA, P0.01) could be found in the control group. After 93 cells, there was no significant change in the transcriptional activity (P0.05) of the SIRT2 gene promoter, and 4 DSVs[g.38900907AG (rs4803006), g.38900291CG (rs2053071), g.38899903TC and g.38899781CG] all existed in the control group and the AMI group. After transfection of its corresponding expression vector to HEK293 cells, no significant changes were found in SIRT2 basis. The transcriptional activity of promoter (P0.05). (2) transfection of g.38900888_91delTAAA and g.38900270AG found in group AMI into H9c2 cells could significantly reduce the transcriptional activity of SIRT2 gene promoter (P0.01). G.38899853CT transfection could significantly increase the transcriptional activity of the SIRT2 gene promoter (P0.01). Similar to the AMI group and the control group. After transfection of frequency sites g.38900907AG (rs4803006) and g.38900291CG (rs2053071) to H9c2 cells, there was no significant change in the transcriptional activity of the SIRT2 gene promoter (P0.05). Conclusion: the study of the genetic and functional variation of the promoter of SIRT2 gene found that the low frequency sequence found in the AMI case may affect the mutation site in the AMI case. The transcriptional activity of SIRT2 gene leads to changes in its expression level and plays an important role in the occurrence and development of myocardial infarction, which provides potential targets for the prevention and treatment of myocardial infarction.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R542.22
【相似文獻】
相關(guān)期刊論文 前10條
1 趙文璞,岸裕幸,村口篤;小鼠與人重排活化基因2啟動子的比較[J];中華微生物學和免疫學雜志;2003年09期
2 趙慧,鄭文嶺,崔東,馬文麗;泛素啟動子的研究進展[J];廣東醫(yī)學;2003年12期
3 高剛;魯艷芹;韓金祥;趙麗;;雙啟動子對增強型綠色熒光蛋白表達的影響[J];中國生物制品學雜志;2009年10期
4 程元橋,林菊生,王文琦,廖家智,姜曉丹,馮瑋,熊平;誘導型一氧化氮合酶基因啟動子-969G→C多態(tài)性的功能[J];世界華人消化雜志;2004年09期
5 吳志香;邵敬偉;袁鳳山;;胰島素樣生長因子結(jié)合蛋白-1啟動子的克隆與序列分析[J];生物技術(shù)通訊;2005年06期
6 王秀亮;陳衛(wèi);梁光萍;陳建;蘇踴躍;楊程;羅向東;;人β1整合素啟動子核心啟動序列初步分析[J];現(xiàn)代生物醫(yī)學進展;2009年01期
7 周天鴻,李月琴,朱嘉明,云泓若,肖小敏;真核細胞轉(zhuǎn)錄系統(tǒng)啟動T7啟動子起始的研究[J];暨南大學學報(自然科學與醫(yī)學版);2000年03期
8 朱立紅;倪培華;應(yīng)雅韻;張潔;金磊;樊綺詩;;血脂與肝脂酶啟動子514C/T多態(tài)性的關(guān)系[J];診斷學理論與實踐;2005年06期
9 朱愛華,彭大新,劉秀梵,張如寬;雞痘病毒載體啟動子的優(yōu)化[J];病毒學報;2000年04期
10 丁清泉,戴順英;σ~(38)識別的啟動子-35區(qū)核酸序列特征研究[J];中國生物化學與分子生物學報;1999年01期
相關(guān)會議論文 前10條
1 徐昌杰;胡桂兵;張上隆;;果實成熟特異啟動子研究進展[A];中國園藝學會第五屆青年學術(shù)討論會論文集[C];2002年
2 蕭鳳回;段承俐;薛剛平;;快速檢測干旱和脫水可誘導植物啟動子瞬間表達特性的方法[A];中國遺傳學會七屆一次青年研討會暨上海高校模式生物E——研究院第一屆模式生物學術(shù)研討會論文匯編[C];2005年
3 龍海濤;李洪清;李玲;;藍豬兒捕獲啟動子系統(tǒng)建立[A];2006中國植物細胞發(fā)育與分子生物學學術(shù)研討會論文集[C];2006年
4 楊俊;劉繼紅;郭小林;王濤;王軍凱;陳美元;王少剛;葉章群;;人腎組織GGCX基因啟動子區(qū)克隆與活性分析[A];第十五屆全國泌尿外科學術(shù)會議論文集[C];2008年
5 馬小娟;侯林;陳曦;馬飛;;人類選擇性剪接基因與選擇性啟動子關(guān)聯(lián)的系統(tǒng)分析[A];“基因、進化與生理功能多樣性”海內(nèi)外學術(shù)研討會暨中國生理學會第七屆比較生理學學術(shù)會議論文摘要[C];2009年
6 陳慧峰;林育純;林麗娜;方飛;陳雯;林忠寧;;蛋白磷酸酶2A不同亞基基因啟動子區(qū)遺傳變異性位點篩查[A];遺傳學進步與人口健康高峰論壇論文集[C];2007年
7 李靜;劉學群;王春臺;;一個煙草葡糖基轉(zhuǎn)移酶基因啟動子的克隆與誘導表達[A];湖北省植物生理學會第十五次學術(shù)研討會論文集[C];2007年
8 呂杰;趙瑩子;黃玉屏;沈萍;陳向東;;嗜鹽古生菌Haloarcula hispanica淀粉酶基因啟動子的研究及其跨域表達載體的構(gòu)建[A];基因開啟未來:新時代的遺傳學與科技進步——湖北省遺傳學會第八次代表大會暨學術(shù)討論會論文摘要匯編[C];2009年
9 夏定國;張婷婷;趙巧玲;張國政;裘智勇;;家蠶脂肪酶Ⅰ基因的啟動子分析[A];第十屆家(柞)蠶遺傳育種及良種繁育學術(shù)研討會論文集[C];2013年
10 王小華;姜廣水;吳欽貞;姜萍萍;劉浩;江浩;;二價雙啟動子防齲DNA疫苗的構(gòu)建及鑒定[A];2007年第七次全國牙體牙髓病學學術(shù)會議論文集[C];2007年
相關(guān)重要報紙文章 前3條
1 記者 錢錚;人類DNA上啟動子數(shù)量可能超過十九萬[N];人民日報;2006年
2 錢錚;人類DNA上啟動子數(shù)量可能超過19萬個[N];醫(yī)藥經(jīng)濟報;2006年
3 ;兒童系統(tǒng)性紅斑狼瘡中白細胞介素-10啟動子區(qū)單核苷酸多態(tài)性對自身表達水平的影響[N];中國醫(yī)藥報;2003年
相關(guān)博士學位論文 前10條
1 馬洪鑫;ZHX2調(diào)控脂蛋白脂酶參與脂肪肝及肝細胞肝癌的作用及機制研究[D];山東大學;2015年
2 宋劍平;基質(zhì)金屬蛋白酶-3基因啟動子區(qū)多態(tài)與散發(fā)性腦動靜脈畸形的遺傳易感性分析與功能研究[D];復旦大學;2014年
3 田媛;關(guān)于人腦膠質(zhì)瘤中miR-144/451啟動子區(qū)甲基化水平的實驗研究[D];天津醫(yī)科大學;2015年
4 王相玲;ICP4促進miR-101表達及miR-101調(diào)節(jié)HSV-1復制機制的研究[D];天津醫(yī)科大學;2015年
5 呂東梅;蘋果HMGR基因家族啟動子的克隆及功能分析[D];山東農(nóng)業(yè)大學;2016年
6 束進;人IRF-5基因的轉(zhuǎn)錄調(diào)控機制研究[D];南京醫(yī)科大學;2016年
7 許文志;柳枝稷根及維管束組織特異性啟動子的分離鑒定[D];四川農(nóng)業(yè)大學;2015年
8 楊予濤;一個光合組織特異表達啟動子的克隆、功能分析及其轉(zhuǎn)錄因子的鑒定[D];山東農(nóng)業(yè)大學;2005年
9 楊曉敏;環(huán)加氧酶-2啟動子區(qū)抑制性結(jié)合蛋白的鑒定和功能分析[D];南京醫(yī)科大學;2007年
10 柳小慶;玉米胚特異性高表達啟動子的基因組規(guī)模篩選、克隆和功能鑒定[D];中國農(nóng)業(yè)科學院;2014年
相關(guān)碩士學位論文 前10條
1 余霜;家蠶血細胞特異啟動子的篩選與鑒定[D];西南大學;2015年
2 王璇;水曲柳節(jié)律基因LHY啟動子克隆及功能研究[D];東北林業(yè)大學;2015年
3 趙夏云;芥菜開花整合子SOC1的啟動子克隆及其與FLC、SVP蛋白相互作用[D];西南大學;2015年
4 張鑫平;擬南芥和油菜花藥特異表達啟動子的克隆與功能分析[D];華中農(nóng)業(yè)大學;2015年
5 于璐;受體相互作用蛋白激酶3轉(zhuǎn)錄調(diào)節(jié)特性研究[D];蘇州大學;2015年
6 李玉姣;豬肝臟特異性TTR基因啟動子驅(qū)動扣囊復膜孢酵母菌BGL1基因在轉(zhuǎn)基因鼠中的表達驗證[D];華中農(nóng)業(yè)大學;2015年
7 郭凱慶;反向PCR精確定位人結(jié)腸癌SW480細胞CD133基因啟動子區(qū)脫氧核糖核酸酶Ⅰ高敏感位點[D];山西醫(yī)科大學;2015年
8 楊丹;大豆誘導型NAC轉(zhuǎn)錄因子基因啟動子克隆及功能研究[D];山東大學;2015年
9 李杰;楊樹木質(zhì)部特異性啟動子的功能及JCesAP關(guān)鍵調(diào)控域研究[D];河北農(nóng)業(yè)大學;2015年
10 汪澤宇;c1orf109結(jié)合cyclin D1啟動子序列特征研究[D];哈爾濱工業(yè)大學;2015年
,本文編號:2142459
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2142459.html