矮稈波蘭小麥重金屬轉(zhuǎn)運(yùn)基因TpNRAMPs克隆和表達(dá)分析
本文選題:矮稈波蘭小麥 + NRAMP; 參考:《四川農(nóng)業(yè)大學(xué)》2016年碩士論文
【摘要】:自然抗性相關(guān)巨噬細(xì)胞蛋白家族(Natural resistance-associated macrophage proteins, NRAMP)是一類高度保守的跨膜蛋白,廣泛存在于原生生物、真菌、植物和動物中。該家族最早在小鼠體內(nèi)發(fā)現(xiàn)(Nramp1),控制小鼠體內(nèi)寄生蟲感染自然抗性。擬南芥(Arbidopsis thaliana)和水稻(Oryza stativa)等植物中的NRAMP基因參與植物體重金屬吸收、轉(zhuǎn)運(yùn)以及再分布,維持植物體內(nèi)金屬平衡;同時,NRAMP家族還同植物抗性相關(guān)。至今,已在擬南芥和水稻中分別發(fā)現(xiàn)6個和7個NRAMP基因,理論上小麥中也應(yīng)該含有NRAMP基因,然而該家族在小麥中鮮有報道。波蘭小麥(2n=4x=28,AABB,Triticum polonicum)是禾本科小麥屬重要的四倍體二粒栽培小麥,是普通小麥遺傳改良的重要種質(zhì)資源。波蘭小麥可能是伊斯帕罕小麥(2n=4x=28,AABB,T.ispahanicum)與硬粒小麥(2n=4x=28,AABB,T.durum)的雜種,同普通小麥及其余四倍體小麥的遺傳相似性較低。矮稈波蘭小麥?zhǔn)窃谖覈陆貐^(qū)發(fā)現(xiàn)的具有矮稈性狀的波蘭小麥,具有株高矮化、長穗等一系列性狀。矮稈波蘭小麥能積累較高含量的鎘和鋅,但其原理未知。NRAMP作為重金屬元素轉(zhuǎn)運(yùn)蛋白,在植物體耐重金屬脅迫方面具有重要的作用。本實(shí)驗旨在分離鑒定矮稈波蘭小麥中的NRAMP基因,并通過qRT-PCR初步分析矮稈波蘭小麥NRAMP在重金屬處理下表達(dá)模式的變化,從而豐富對植物NRAMP轉(zhuǎn)運(yùn)蛋白家族的認(rèn)識,為小麥重金屬遺傳修飾奠定基礎(chǔ)和提供依據(jù)。本研究利用矮稈波蘭小麥轉(zhuǎn)錄組數(shù)據(jù)庫,篩選獲得4條編碼序列完整的NRAMP序列,以此作為參考序列設(shè)計引物,從矮稈波蘭小麥的根和葉中進(jìn)行克隆,同時利用qRT-PCR對TpNRAMPs在7種不同重金屬元素處理下基因表達(dá)情況進(jìn)行了分析。主要結(jié)果如下:1.矮稈波蘭小麥具有較強(qiáng)的耐金屬屬性。金屬處理24小時后,矮稈波蘭小麥的根和葉片均積累了大量的金屬元素。其中銅含量最高,分別達(dá)到了125.88 mg/g和38.53mg/g,但同時也影響了植株的生長。此外,根和葉片也積累了高含量的鎘、鋅和鐵等元素,但植株生長沒有受到影響,表明矮稈波蘭小麥具有一定的耐金屬屬性。2.克隆獲得5條矮稈波蘭小麥TpNRAMPs基因序列,分別命名為TpNRAMP2.1、 TpNRAMP2.2、TpNRAMP3、TpNRAMP5和TpNRAMP6。同時,小麥基因組序列信息比對獲得了普通小麥的TaNRAMP1、TaNRAMP7及一未命名的TaNRAMP基因,從而確定小麥具有7個或7個以上NRAMP基因。3.在不同金屬脅迫下,TpNRAMP2.1、TpNRAMP3、TpNRAMP5和TpNRAMP6的表達(dá)模式變化不同,表現(xiàn)出不同的金屬敏感性,可能具有不同的金屬吸收和轉(zhuǎn)運(yùn)的能力。TpNRAMP2.1在矮稈波蘭小麥的根部對鎂、鐵和銅最敏感;在葉片中,對鎂和鋅最敏感。其次,TpNRAMP3在根部對鐵、銅和鎘最敏感且其表達(dá)量均顯著提高;在葉片中,TpNRAMP3對鎘無反應(yīng)。第三,TpNRAMP5在根部對鐵和鋅最敏感;在葉片中,對鎘的敏感性最高。最后,TpNRAMP6在根部對鐵最敏感,而對鉛無反應(yīng):在葉片中,對鎂和鋅最敏感。同時,這4個基因在矮稈波蘭小麥的根部對鐵均表現(xiàn)出最強(qiáng)的敏感性。
[Abstract]:The natural resistance related macrophage protein family (Natural resistance-associated macrophage proteins (NRAMP)) is a highly conserved type of transmembrane protein, which is widely found in protists, fungi, plants and animals. The family was first found in mice (Nramp1) to control the natural resistance of the parasites in mice. Arabidopsis (Arbidop). The NRAMP genes of SIS thaliana) and rice (Oryza stativa) are involved in plant body weight metal absorption, transport and redistribution to maintain the balance of metal in plants. At the same time, the NRAMP family is also related to plant resistance. Up to now, 6 and 7 NRAMP genes have been found in Arabidopsis and rice respectively. In theory, NRAMP should also contain NRAMP. Gene, however, this family is rarely reported in wheat. Poland wheat (2n=4x=28, AABB, Triticum polonicum) is an important tetraploid two grain wheat cultivated in the genus grasses. It is an important germplasm resource for genetic improvement of common wheat. Poland wheat may be 2n=4x=28, AABB, T.ispahanicum, and hard grain wheat (2n=4x=28, AABB, T). The genetic similarity of.Durum) was lower than that of common wheat and other four triploid wheat. Dwarf Poland wheat was found in Xinjiang region of China with dwarfing character of Poland wheat, which had a series of characters such as dwarfing plant height and long panicle. The dwarf Poland wheat could accumulate high content of cadmium and zinc, but the principle of.NRAMP was not known as heavy gold. The purpose of this experiment is to isolate and identify the NRAMP gene in the dwarf Poland wheat, and to analyze the changes in the expression pattern of the dwarf Poland wheat NRAMP under the heavy metal treatment by qRT-PCR, so as to enrich the understanding of the plant NRAMP transporter family. This study uses the Poland wheat transcriptional database of dwarf Poland wheat transcriptional group to screen and obtain 4 complete sequences of coded sequences, which are designed as primers for reference sequences, cloned from the roots and leaves of dwarf Poland wheat, and at the same time using qRT-PCR to TpNRAMPs in 7 different heavy metal elements The main results were as follows: 1. the dwarf Poland wheat had strong metal resistance. After 24 hours of metal treatment, the roots and leaves of the dwarf Poland wheat accumulated a large number of metal elements, of which the highest copper content reached 125.88 mg/g and 38.53mg/g respectively, but it also affected the plant. In addition, the roots and leaves also accumulated a high content of cadmium, zinc and iron, but the growth of the plant was not affected. It showed that the dwarf Poland wheat had a certain metal resistance.2. clone to obtain 5 dwarf Poland wheat TpNRAMPs gene sequences, named TpNRAMP2.1, TpNRAMP2.2, TpNRAMP3, TpNRAMP5 and TpNRAMP6., respectively. Genomic sequence information comparison obtained the TaNRAMP1, TaNRAMP7 and unnamed TaNRAMP gene of common wheat, thus determining that the expression patterns of TpNRAMP2.1, TpNRAMP3, TpNRAMP5 and TpNRAMP6 in Wheat with 7 or more than 7 NRAMP genes were different under different metal stresses, showing different metal sensitivities and may be different. The ability of.TpNRAMP2.1 to absorb and transport metals is most sensitive to magnesium, iron and copper at the roots of the dwarf Poland wheat; in the leaves, it is most sensitive to magnesium and zinc. Secondly, TpNRAMP3 is most sensitive to iron, copper and cadmium in the root and its expression is significantly increased; in the leaves, TpNRAMP3 does not respond to cadmium. Third, TpNRAMP5 is most sensitive to iron and zinc at the root. The sensitivity to cadmium is the highest in the leaves. Finally, TpNRAMP6 is most sensitive to iron at the root and does not respond to lead: in leaves, it is most sensitive to magnesium and zinc. At the same time, these 4 genes are most sensitive to iron in the roots of dwarf Poland wheat.
【學(xué)位授予單位】:四川農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S512.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉光欣,周永紅,鄭有良,楊瑞武,丁春邦;吐魯番矮稈波蘭小麥形態(tài)與細(xì)胞學(xué)研究[J];四川農(nóng)業(yè)大學(xué)學(xué)報;2002年03期
2 劉虹,張志清,顏澤洪,魏育明,鄭有良;波蘭小麥(Triticum polonicum L.)高分子麥谷蛋白亞基多樣性分析[J];四川農(nóng)業(yè)大學(xué)學(xué)報;2005年03期
3 宋志劍;康厚揚(yáng);周永紅;;矮稈波蘭小麥赤霉酸不敏感基因的遺傳分析[J];麥類作物學(xué)報;2007年03期
4 劉光欣,周永紅,鄭有良,楊瑞武,丁春邦;矮稈波蘭小麥矮稈性狀對赤霉酸反應(yīng)的研究[J];四川農(nóng)業(yè)大學(xué)學(xué)報;2002年02期
5 王永朋;奚亞軍;王竹林;陳朝儒;楊進(jìn)軍;劉曙東;;波蘭小麥對普通小麥部分品質(zhì)指標(biāo)的改良作用[J];麥類作物學(xué)報;2010年04期
6 王彥民;王竹林;奚亞軍;劉曙東;;波蘭小麥對普通小麥醇溶蛋白的改良作用[J];麥類作物學(xué)報;2008年03期
7 楊瑞武,周永紅,鄭有良;矮稈波蘭小麥的C帶分析[J];四川農(nóng)業(yè)大學(xué)學(xué)報;2001年02期
8 張先煉;;關(guān)于普通小麥的來歷[J];內(nèi)蒙古農(nóng)業(yè)科技;1982年03期
9 李美霞;楊睿;李有梅;崔桂賓;王竹林;奚亞軍;劉曙東;;波蘭小麥×普通小麥品系“中13”RIL群體籽粒特性的QTL定位[J];麥類作物學(xué)報;2012年05期
10 楊睿;劉聯(lián)正;李華;鐘歡;楊興圣;王竹林;劉曙東;;波蘭小麥×普通小麥品系中13重組自交系(RIL)群體穗部性狀的QTL分析[J];農(nóng)業(yè)生物技術(shù)學(xué)報;2012年05期
相關(guān)碩士學(xué)位論文 前10條
1 谷夢雪;華山新麥草三個SnRK2基因的克隆及表達(dá)分析[D];四川農(nóng)業(yè)大學(xué);2015年
2 鄭翰;波蘭小麥蔗糖合成酶基因的克隆及表達(dá)分析[D];四川農(nóng)業(yè)大學(xué);2014年
3 朱建書;矮稈波蘭小麥重金屬轉(zhuǎn)運(yùn)基因TpNRAMPs克隆和表達(dá)分析[D];四川農(nóng)業(yè)大學(xué);2016年
4 劉虹;波蘭小麥(Triticum poloicu L.)種子貯藏蛋白遺傳多樣性研究[D];四川農(nóng)業(yè)大學(xué);2005年
5 王彥民;波蘭小麥對普通小麥改良作用的研究[D];西北農(nóng)林科技大學(xué);2008年
6 王永朋;波蘭小麥對普通小麥部分品質(zhì)性狀的改良作用研究[D];西北農(nóng)林科技大學(xué);2010年
7 劉光欣;吐魯番矮稈波蘭小麥細(xì)胞學(xué)研究及矮稈、長穎基因的染色體定位[D];四川農(nóng)業(yè)大學(xué);2002年
8 鄧小鋒;新疆吐魯番矮稈波蘭小麥七個重要農(nóng)藝性狀相關(guān)基因的染色體定位研究[D];四川農(nóng)業(yè)大學(xué);2005年
9 宋志劍;矮稈波蘭小麥麥谷蛋白亞基基因的分子克隆及序列分析[D];四川農(nóng)業(yè)大學(xué);2007年
10 楊睿;波蘭小麥×普通小麥品系中13RIL群體重要農(nóng)藝性狀的QTL定位[D];西北農(nóng)林科技大學(xué);2012年
,本文編號:1890533
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/1890533.html