轉(zhuǎn)基因棉花抗旱性評(píng)價(jià)體系的建立以及安全性評(píng)價(jià)研究
本文選題:轉(zhuǎn)基因棉花 切入點(diǎn):干旱脅迫 出處:《石河子大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:干旱是我國(guó)主要的自然災(zāi)害之一,新疆屬于干旱荒漠地帶,氣候干燥;同時(shí)新疆又是我國(guó)最大的棉花生產(chǎn)基地之一,而棉花屬于耗水作物,農(nóng)業(yè)用水危機(jī)越來(lái)越突出,培育抗旱轉(zhuǎn)基因棉花顯得尤為重要,可很大程度上緩解干旱對(duì)棉花的影響?购缔D(zhuǎn)基因棉花的獲得性抗性所引發(fā)的安全性問題則是其應(yīng)用于生產(chǎn)和推廣的前提。本研究以實(shí)驗(yàn)室通過花粉管通道法獲得的11個(gè)轉(zhuǎn)基因抗逆棉花株系和其3個(gè)親本受體品種為材料,采用膜下滴灌,共5個(gè)不同灌水量處理:不灌溉(NI)、低量灌溉(LI)、中量灌溉(MI)、高量灌溉(HI)、正常灌溉(CK),其中正常灌水量略高于石河子棉區(qū)平均值。并對(duì)棉花農(nóng)藝、生理、光合、熒光進(jìn)行了測(cè)定,以期研究轉(zhuǎn)基因棉花對(duì)水分的響應(yīng)以及建立轉(zhuǎn)基因棉花抗旱性評(píng)價(jià)體系用以評(píng)定其抗旱性和生存競(jìng)爭(zhēng)力。并通過對(duì)連續(xù)耕作過轉(zhuǎn)基因棉花和親本棉花的根系土壤理化性質(zhì)和微生物群落多樣性進(jìn)行分析,用以揭示抗旱轉(zhuǎn)基因棉花對(duì)土壤微生物多樣性造成的影響。為指導(dǎo)田間抗旱轉(zhuǎn)基因棉花水分管理和環(huán)境安全性提供一定的理論依據(jù)和技術(shù)支持。主要研究結(jié)果如下:1.采用不灌溉(NI)和正常灌溉(CK)條件,通過主成分分析及隸屬函數(shù)加權(quán)平均法(D值)并結(jié)合抗旱指數(shù)法對(duì)11個(gè)轉(zhuǎn)基因抗逆棉花株系及其3種親本受體的株高、紅莖比、始果節(jié)位、果枝數(shù)、鈴數(shù)、單鈴重、單株鈴重、籽棉產(chǎn)量、葉綠素、過氧化物酶(POD)、超氧化物歧化酶(SOD)、丙二醛(MDA)、過氧化氫酶(CAT)、可溶性蛋白等進(jìn)行了抗旱綜合性評(píng)價(jià)以鑒定其抗旱性強(qiáng)度。結(jié)果表明,在所有供試材料中,相對(duì)親本受體型,轉(zhuǎn)基因型的抗旱性均高于親本。其中以25C-1和TH1-katG的抗旱性綜合指標(biāo)值最高,抗旱性最強(qiáng),TH1-ACCD、TH1-35S-COR和24C-1為中間類型,TH1-HRD、TH1-SAD,672-SacB、672-RD-COR、672-RD-SAD和672-2300TF為不抗旱材料。證明外源抗逆基因的導(dǎo)入提高了其的抗旱性,對(duì)比親本受體型其生存競(jìng)爭(zhēng)力均有所提高。2.在5個(gè)不同灌水量處理下,對(duì)其中24C-1、25C-1兩種轉(zhuǎn)基因抗旱棉花株系進(jìn)行研究,測(cè)定其在不同水分脅迫下棉花苗、蕾期農(nóng)藝性狀及花鈴期不同階段花(蕾)鈴發(fā)育、葉片光合參數(shù)和葉綠素?zé)晒鈪?shù)等指標(biāo),研究轉(zhuǎn)基因及其親本受體棉花對(duì)水分脅迫響應(yīng)機(jī)理的差異。結(jié)果表明,隨著干旱脅迫程度的加重,棉花花(蕾)鈴發(fā)育明顯受到抑制,2個(gè)品種(系)的凈光合速率(Pn)、PSII最大光化學(xué)效率(Fv/Fm)、光能利用率(LUE)、PSII光化學(xué)量子效率(φPSII)、光化學(xué)碎滅系數(shù)(qP)呈現(xiàn)下降趨勢(shì);而氣孔限制值(Ls)和非光化學(xué)碎滅系數(shù)(NPQ)則呈現(xiàn)上升趨勢(shì),HI和CK下差異均不顯著或差異較小。3.通過對(duì)25C-1及其對(duì)應(yīng)親本受體TH2棉花根際土壤采集,對(duì)根際土壤理化性質(zhì)、作物產(chǎn)量進(jìn)行連續(xù)3個(gè)種植季節(jié)及第三年進(jìn)行的土壤微生物微生態(tài)多樣性的測(cè)定,以期研究作物、土壤、土壤微生物三者間的動(dòng)態(tài)變化關(guān)系。研究發(fā)現(xiàn),在三年間轉(zhuǎn)基因及其親本受體在年與年及品種(系)間在PH值、全氮、速效磷和速效鉀含量上均無(wú)顯著差異,只在2014/2015、2014/2016的土壤有機(jī)質(zhì)(OM)及土壤微生物微生態(tài)中Arthrobacter_oxydans和Lysobacter_soli的物種豐度上存在差異。結(jié)果表明,轉(zhuǎn)基因及其親本受體在連續(xù)種植季年間的土壤理化上無(wú)顯著差異,而土壤有機(jī)質(zhì)在年間出現(xiàn)顯著差異,因此棉花秸稈還田可能是導(dǎo)致抗旱轉(zhuǎn)基因型與親本受體型根際微生態(tài)差異的根本原因。
[Abstract]:Drought is one of the major natural disasters in China, Xinjiang belongs to arid desert, dry climate; at the same time, Xinjiang is one of China's largest production base of cotton, and cotton to water consumption crops, agricultural water crisis has become increasingly prominent, the cultivation of drought resistance of transgenic cotton is particularly important, which can largely alleviate the effects of drought on cotton the drought resistance of transgenic cotton. The safety problems caused by resistance is applied to the production and promotion of the premise. In this study, the laboratory obtained by pollen tube pathway 11 transgenic cotton resistant strains and its receptor 3 parental varieties as materials, using drip irrigation, a total of 5 different irrigation the amount of processing: no irrigation (NI), low volume irrigation (LI), amount of irrigation (MI), a high amount of irrigation (HI), normal irrigation (CK), which is slightly higher than the normal amount of irrigation in Shihezi average. And on cotton agronomic, physiological, light Together, the fluorescence was measured, in order to study the response of transgenic cotton on the water and the establishment of Transgenic Cotton Drought Resistance evaluation system to evaluate the drought resistance and survival competitiveness. And through the root soil continuous cultivated transgenic cotton and cotton were analyzed the physicochemical properties and microbial community diversity, in order to reveal the impact of Drought Resistance Transgenic Cotton on soil microbial diversity caused. To provide theoretical basis and technical support for the guidance of drought resistant transgenic cotton field water management and environmental safety. The main results are as follows: 1. with no irrigation (NI) and normal irrigation (CK) conditions, through principal component analysis and membership function weighted average method (D value) combined with drought resistance index of 11 transgenic cotton resistant strains and 3 strains of high parental receptor, red stem, the first fruit node, branch number, boll number, boll weight per plant. Boll weight, seed yield, chlorophyll, peroxidase (POD), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), a comprehensive evaluation of drought resistance of soluble protein in identification of drought resistance and strength. The results showed that in all the tested materials, the relative by parents size, type of transgenic drought resistance. The drought resistance was higher than that of parent 25C-1 and TH1-katG index is the highest, the strongest drought resistance, TH1-ACCD, TH1-35S-COR and 24C-1 for TH1-HRD, TH1-SAD, intermediate type, 672-SacB, 672-RD-COR, 672-RD-SAD and 672-2300TF for drought resistant materials. That the exogenous genes into improved drought resistance the comparison of parents receiving the survival competitiveness increased.2. in 5 different irrigation treatments, the study of 24C-1,25C-1 two kinds of transgenic drought resistant cotton lines, measured in different water stress in cotton seedling, bud Different stages of agronomic traits and flowering stage (flower bud) Boll Development, photosynthetic parameters and chlorophyll fluorescence parameters, different response mechanism of transgenic cotton and its parental receptors to water stress. The results showed that with the aggravation of drought stress, Cotton Boll Development (bud) was significantly inhibited (2 varieties the Department of) the net photosynthetic rate (Pn), the maximum photochemical efficiency of PSII (Fv/Fm), the utilization rate of light energy (LUE), PSII photochemical efficiency (PSII), photochemical quenching coefficient (qP) decreased; while the stomatal limitation value (Ls) and non photochemical quenching coefficient (NPQ) is the rise, HI and CK had no significant difference or little difference of.3. on the 25C-1 and its corresponding receptor TH2 in cotton rhizosphere soil were collected on rhizosphere soil physicochemical properties, crop yield for 3 consecutive seasons and three years of planting soil microorganism ecological diversity The determination of crop, the soil, dynamic changes of soil microbial relationship between the three. The study found that in three years and their parents in transgenic receptor from year to year and varieties (lines) in pH, total nitrogen, available phosphorus and available potassium content were no significant differences in soil organic matter, only 2014/20152014/2016 the (OM) and soil microbial Arthrobacter_oxydans and Lysobacter_soli micro ecology of species abundance differences. The results showed that the transgenic and their receptors in the continuous planting season from soil had no significant difference, while soil organic matter has significant difference in years, so the cotton straw is the main reason for the drought resistant transgenic type and the parent body of rhizosphere differences.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S562;S423
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘曉迪;張穎;邵萌;馬黎明;郭新宇;;作物根系結(jié)構(gòu)對(duì)干旱脅迫的適應(yīng)性研究進(jìn)展[J];中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào);2017年02期
2 董志朋;劉頊;唐玉姣;田雪;張杭;劉;;楊重軍;;我國(guó)種子引發(fā)技術(shù)在作物抗旱性上的研究進(jìn)展[J];種子;2016年10期
3 鄧忠;翟國(guó)亮;呂謀超;李迎;宗潔;蔡九茂;馮俊杰;;我國(guó)農(nóng)業(yè)應(yīng)對(duì)干旱災(zāi)害的技術(shù)研究現(xiàn)狀及展望[J];節(jié)水灌溉;2016年08期
4 張振華;董珊珊;劉燕;于賜剛;;土壤微生物多樣性的土壤生態(tài)系統(tǒng)服務(wù)功能[J];世界環(huán)境;2016年S1期
5 宮麗丹;魏麗萍;倪書邦;劉世紅;;持續(xù)干旱對(duì)油棕幼苗葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)的影響[J];中國(guó)農(nóng)學(xué)通報(bào);2016年13期
6 朱文旭;張冰玉;黃秦軍;褚延廣;丁昌俊;張偉溪;蘇曉華;;轉(zhuǎn)多基因庫(kù)安托楊對(duì)土壤微生物群落功能的影響[J];林業(yè)科學(xué);2015年11期
7 董孔軍;劉天鵬;何繼紅;任瑞玉;張磊;楊天育;;糜子育成品種苗期抗旱性評(píng)價(jià)與鑒定指標(biāo)篩選[J];植物遺傳資源學(xué)報(bào);2015年05期
8 閆曼曼;鄭劍超;張巨松;田立文;郭仁松;林濤;石洪亮;;蕾期調(diào)虧灌溉對(duì)海島棉棉鈴發(fā)育及產(chǎn)量的影響[J];棉花學(xué)報(bào);2015年04期
9 莫偉平;嚴(yán)婷婷;崔春梅;王博茜;邢思年;賈文鎖;劉國(guó)杰;;水分脅迫對(duì)巨峰葡萄葉片PSⅡ光化學(xué)效率及光能分配的影響[J];中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào);2015年03期
10 游朝;晁朝霞;姚正培;任燕萍;陳全家;曲延英;張樺;;轉(zhuǎn)MvNHX1和MvP5CS基因棉花耐鹽抗旱性比較與育種價(jià)值分析[J];棉花學(xué)報(bào);2015年03期
相關(guān)會(huì)議論文 前1條
1 孟慶立;關(guān)周博;馮佰利;柴巖;胡銀崗;;谷子抗旱相關(guān)性狀的主成分與模糊聚類分析[A];2008中國(guó)作物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 鄭小國(guó);水稻抗旱性馴化的表觀遺傳學(xué)研究[D];華中農(nóng)業(yè)大學(xué);2015年
2 呂素蓮;轉(zhuǎn)betA和TsVP基因提高棉花耐鹽、抗旱性的研究[D];山東大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 蘇振峰;GH1β-葡萄糖苷酶在擬南芥和水稻中的生物信息學(xué)及表達(dá)模式分析[D];山東農(nóng)業(yè)大學(xué);2014年
2 蔡永智;轉(zhuǎn)CBF1和KatG基因棉花抗旱性分析[D];石河子大學(xué);2013年
3 王麗娟;轉(zhuǎn)基因大豆對(duì)土壤氮循環(huán)相關(guān)微生物多樣性的影響[D];內(nèi)蒙古師范大學(xué);2013年
4 田佳喬;少免耕和秸稈還田對(duì)土壤理化性質(zhì)及作物周年產(chǎn)量的影響[D];四川農(nóng)業(yè)大學(xué);2012年
5 孫建富;抗旱轉(zhuǎn)基因棉花的安全性評(píng)價(jià)[D];石河子大學(xué);2011年
6 蒲偉鳳;不同類型大豆種質(zhì)資源抗旱性比較及野生大豆抗旱性篩選[D];河北科技師范學(xué)院;2010年
7 郭紀(jì)坤;陸地棉抗旱耐鹽及產(chǎn)量、形態(tài)性狀的QTL定位[D];新疆農(nóng)業(yè)大學(xué);2007年
,本文編號(hào):1610416
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/1610416.html