基于Grey Markov模型的股票價(jià)格研究
[Abstract]:The stock market is an important part of the securities market. With the in-depth understanding of the securities market, people are more and more concerned about the stock market in the final analysis is the stock price change and trend, in order to obtain short-term returns. The stock price has great volatility and uncertainty, so it is extremely difficult to master all the information that affects the stock price. Now a variety of stock price prediction models have been produced, and good results have been achieved. However, there are not many methods to make prediction models only according to stock price, among which the more typical mathematical models are grey model and Markov chain. Grey model is a grey system to predict the trend of stock price. In this system, except that the stock price information is regarded as known, any other information is regarded as unknown, that is to say, the stock price is regarded as a gray quantity in the model. Then the known specified stock price sequence is used to predict the price trend and even the price of the stock in the short term in the future. In the process of application, the model shows the characteristics of less data needed to establish the mathematical model, simple model and high prediction accuracy. Grey model prediction is based on GM (1, 1) mathematical model, which forecasts the future price trend of a stock in a specific quantitative form. Its solution set is an exponential curve, which is not suitable for the research and prediction of the stock price trend with great volatility. Markov process is a kind of stochastic process. Markov chain reflects Markov process in concrete form. It first divides the known stock price sequence data into different states according to different standards. Then, according to the transition probability between the states, the future state of the stock price is predicted, which reflects the inherent regularity between the stock prices, and it is suitable for predicting the stock price series with large volatility and sufficient accuracy. Therefore, combining the two methods to make grey Markov prediction can not only avoid the shortcomings of the two methods, but also carry forward the advantages of the two methods, which can obviously improve the prediction accuracy of stock price. In this paper, the daily closing price of Shanghai and Shenzhen 300 Index from January 4, 2012 to June 13, 2012 is selected as the sample sequence of the model. Through the establishment of grey Markov model for the sample sequence, the price value of the stock in the next five days is predicted. The results show that although there is an error between the prediction results and the actual results, the error is very small, and the prediction accuracy is higher than that of GM (1, 1) model, which shows the superiority of the model in stock price prediction. Using this model to predict the stock price can provide some investment reference for people.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F224;F830.91
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳華友,趙佳寶,劉春林;基于灰色關(guān)聯(lián)度的組合預(yù)測(cè)模型的性質(zhì)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
2 韋丁源;;股市大盤指數(shù)的馬爾科夫鏈預(yù)測(cè)法[J];廣西廣播電視大學(xué)學(xué)報(bào);2008年03期
3 漆明春;戴亮;;基于灰色模型的股票價(jià)格預(yù)測(cè)研究[J];海南金融;2008年08期
4 汪淼,羅劍;運(yùn)用馬爾科夫預(yù)測(cè)法構(gòu)建股價(jià)預(yù)測(cè)模型[J];經(jīng)濟(jì)師;2005年01期
5 徐維維;高風(fēng);;灰色算法在股票價(jià)格預(yù)測(cè)中的應(yīng)用[J];計(jì)算機(jī)仿真;2007年11期
6 楊淑玲;;股票價(jià)格的灰色預(yù)測(cè)[J];江西財(cái)經(jīng)大學(xué)學(xué)報(bào);2006年05期
7 吳亞桃;;基于灰色系統(tǒng)理論的企業(yè)技術(shù)創(chuàng)新績(jī)效評(píng)價(jià)[J];價(jià)值工程;2006年04期
8 雷宗光;張君;;基于馬爾可夫鏈模型的滬深300指數(shù)日收益率研究[J];科技創(chuàng)業(yè)月刊;2007年09期
9 胡岸;;灰色馬爾可夫鏈組合在預(yù)測(cè)股票價(jià)格上的應(yīng)用[J];科學(xué)技術(shù)與工程;2012年01期
10 郝飛;;馬爾科夫預(yù)測(cè)法在股市預(yù)測(cè)中的應(yīng)用[J];科學(xué)之友(學(xué)術(shù)版);2006年06期
相關(guān)碩士學(xué)位論文 前9條
1 申志濤;基于灰色系統(tǒng)預(yù)測(cè)理論的商品住宅價(jià)格分析[D];大連理工大學(xué);2010年
2 溫海彬;馬爾可夫鏈預(yù)測(cè)模型及一些應(yīng)用[D];南京郵電大學(xué);2012年
3 王慶;基于灰色系統(tǒng)理論的財(cái)務(wù)數(shù)據(jù)挖掘研究和應(yīng)用[D];廈門大學(xué);2001年
4 張浩;灰色系統(tǒng)理論在我國(guó)宏觀經(jīng)濟(jì)分析中的應(yīng)用[D];南京信息工程大學(xué);2005年
5 趙梅娟;GM(1,1)模型的改進(jìn)及其應(yīng)用[D];江蘇大學(xué);2005年
6 彭志行;馬爾可夫鏈理論及其在經(jīng)濟(jì)管理領(lǐng)域的應(yīng)用研究[D];河海大學(xué);2006年
7 賈凌云;人口預(yù)測(cè)的灰色增量模型及其應(yīng)用[D];南京信息工程大學(xué);2006年
8 程松林;基于灰色理論的武漢商品房?jī)r(jià)格預(yù)測(cè)和分析[D];華中師范大學(xué);2008年
9 劉莉;區(qū)域環(huán)境質(zhì)量的灰色分析[D];山東大學(xué);2008年
,本文編號(hào):2496767
本文鏈接:http://sikaile.net/jingjilunwen/zbyz/2496767.html