基于數(shù)據(jù)挖掘的婁底市移動公司客戶流失預(yù)警研究
本文選題:婁底移動 + 客戶流失 ; 參考:《湖南大學(xué)》2016年碩士論文
【摘要】:數(shù)據(jù)挖掘能夠吸取隱藏在大數(shù)據(jù)后面的有用知識,并把這些隱性知識利用起來,從海量數(shù)據(jù)中提取人們感興趣的知識。近十幾年來,出現(xiàn)了許多數(shù)據(jù)挖掘的新方法,如神經(jīng)網(wǎng)絡(luò)、文本挖掘、支持向量機(jī)等,特別是最近幾年,數(shù)據(jù)挖掘基本概念和方法都已成型,并逐漸得到人們的認(rèn)可。數(shù)據(jù)挖掘研究正在向更深層次的方向發(fā)展。隨著電信改革的不斷深入,近幾年通信行業(yè)在我國蓬勃發(fā)展,其產(chǎn)業(yè)結(jié)構(gòu)鏈變得越來越復(fù)雜,很多環(huán)節(jié)都影響了客戶行為,從而也賦予了客戶流失新的內(nèi)涵,使得客戶挽留與客戶保有難度加大。于是,國內(nèi)很多電信運(yùn)營商開始尋找新的方法,預(yù)測電信客戶的流失問題;跀(shù)據(jù)挖掘技術(shù)的電信客戶流失預(yù)測研究便開始在國內(nèi)發(fā)展起來。本文根據(jù)數(shù)據(jù)挖掘技術(shù)及理論,借助婁底市移動公司的業(yè)務(wù)數(shù)據(jù),懫用了決策樹的數(shù)據(jù)挖掘算法,遵循標(biāo)準(zhǔn)數(shù)據(jù)建模準(zhǔn)則,逐步按照商業(yè)理解、數(shù)據(jù)理解、數(shù)據(jù)準(zhǔn)備、模型構(gòu)建、模型評估的步驟,對移動客戶流失問題做了預(yù)測研究,并為移動客戶的流失管理提供了戰(zhàn)略性策略。首先對本文的研究背景、研究現(xiàn)狀、主要研究內(nèi)容、研究方法和創(chuàng)新點(diǎn)進(jìn)行了描述。其次,對婁底市移動公司客戶流失現(xiàn)狀及分析,通過查閱資料和實(shí)地調(diào)查,運(yùn)用PEST分析法和行業(yè)分析法,對公司所處的宏觀環(huán)境、行業(yè)結(jié)構(gòu)、市場競爭態(tài)勢進(jìn)行歸納,分析出其面臨的機(jī)會與威脅。從實(shí)際因素的角度出發(fā),對公司離網(wǎng)數(shù)據(jù)進(jìn)行分析,分別進(jìn)行評價。再次,通過數(shù)據(jù)抽取,進(jìn)行數(shù)據(jù)選擇分析,建立模型。最后,提出婁底市移動公司客戶流失管理策略。從實(shí)際出發(fā),尤其是從總公司未來的發(fā)展趨勢出發(fā),提出保障公司客戶維系的具體策略。本文的研究在前人的研究基礎(chǔ)上對電信行業(yè)客戶的流失管理進(jìn)行更加細(xì)化的分析,為數(shù)據(jù)挖掘技術(shù)在電信行業(yè)的客戶行為分析和客戶關(guān)系管理的應(yīng)用提供了有益參考,并且對電信行業(yè)發(fā)展和維護(hù)與客戶的良好關(guān)系,增強(qiáng)企業(yè)的競爭力也有較大的現(xiàn)實(shí)意義。
[Abstract]:Data mining can absorb the useful knowledge hidden behind big data and make use of the tacit knowledge to extract the knowledge that people are interested in from the massive data. In recent years, many new methods of data mining have emerged, such as neural network, text mining, support vector machine and so on. Especially in recent years, the basic concepts and methods of data mining have been formed and gradually accepted by people. The research of data mining is developing to a deeper level. With the deepening of telecommunication reform, in recent years, the telecommunications industry has developed vigorously in our country, and its industrial structure chain has become more and more complex. Many links have affected customer behavior, thus giving new meaning to customer churn. Customer retention and customer retention more difficult. As a result, many domestic telecom operators began to look for new ways to predict the loss of telecom customers. The research of telecom customer churn prediction based on data mining technology began to develop in China. According to the technology and theory of data mining, with the help of the business data of Loudi City Mobile Company, this paper uses the data mining algorithm of decision tree, follows the standard data modeling criterion, and gradually according to the commercial understanding, data understanding, data preparation. The model construction and the steps of model evaluation are used to predict the problem of mobile customer churn and provide a strategic strategy for mobile customer churn management. First of all, the research background, research status, main research content, research methods and innovation points are described. Secondly, through consulting information and field investigation, using PEST analysis method and industry analysis method, the author summarizes the macro environment, industry structure and market competition situation of Loudi mobile company. Analyze the opportunities and threats they face. From the point of view of actual factors, the company off-net data are analyzed and evaluated separately. Thirdly, through data extraction, data selection analysis, the establishment of the model. Finally, the Loudi mobile company customer turnover management strategy. Starting from the actual situation, especially from the future development trend of the head office, this paper puts forward the specific strategies to ensure the company's customer maintenance. On the basis of previous studies, this paper makes a more detailed analysis of customer churn management in telecom industry, which provides a useful reference for the application of data mining technology in customer behavior analysis and customer relationship management in telecom industry. It is also of great practical significance to the development and maintenance of telecommunication industry and the maintenance of good relationship with customers and the enhancement of the competitiveness of enterprises.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:F626;F274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉在友;王麗琳;;數(shù)據(jù)挖掘視角下的電信客戶流失預(yù)測研究[J];知識經(jīng)濟(jì);2016年05期
2 楊逸凡;趙夏;;數(shù)據(jù)挖掘在電信客戶流失分析中的應(yīng)用[J];甘肅科技縱橫;2015年05期
3 梁鋒;;數(shù)據(jù)挖掘技術(shù)在壽險客戶流失中的應(yīng)用[J];電子科學(xué)技術(shù);2015年01期
4 李洋;;基于神經(jīng)元網(wǎng)絡(luò)的客戶流失數(shù)據(jù)挖掘預(yù)測模型[J];計(jì)算機(jī)應(yīng)用;2013年S1期
5 秦秀潔;;數(shù)據(jù)挖掘流程改進(jìn)研究[J];河南科學(xué);2013年06期
6 何躍;何正林;周欣胤;;基于數(shù)據(jù)挖掘的固網(wǎng)大客戶流失組合預(yù)警[J];軟科學(xué);2012年01期
7 朱幫助;張秋菊;鄒昊飛;魏一鳴;;基于OSA算法和GMDH網(wǎng)絡(luò)集成的電子商務(wù)客戶流失預(yù)測[J];中國管理科學(xué);2011年05期
8 謝芳;;數(shù)據(jù)挖掘在證券客戶流失管理中的應(yīng)用[J];科技管理研究;2011年10期
9 張美圖;姜艷暉;;數(shù)據(jù)挖掘在移動通信市場的應(yīng)用[J];現(xiàn)代電信科技;2011年Z1期
10 劉志超;王雷;谷壘;馮湘;;基于數(shù)據(jù)挖掘技術(shù)的客戶流失預(yù)警模型[J];微計(jì)算機(jī)信息;2011年02期
,本文編號:1782189
本文鏈接:http://sikaile.net/jingjilunwen/xxjj/1782189.html