復(fù)雜信息環(huán)境下投資者學(xué)習(xí)行為對其收益影響分析
本文選題:復(fù)雜網(wǎng)絡(luò) 切入點(diǎn):信息擴(kuò)散 出處:《天津大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著信息技術(shù)的發(fā)展,證券市場中投資者個體間關(guān)于信息的互動方式與互動網(wǎng)絡(luò)日趨復(fù)雜,這些信息可能來自于投資者根據(jù)自身經(jīng)驗(yàn)對市場環(huán)境的分析、對其他投資者投資行為的觀察,或者與他人進(jìn)行的溝通交流。這些投資者間進(jìn)行的關(guān)于投資經(jīng)驗(yàn)的分享與交流,使得能力差的投資者傾向于借鑒和學(xué)習(xí)能力強(qiáng)的投資者的投資策略,能力強(qiáng)的投資者會基于歷史數(shù)據(jù)和相關(guān)理論知識分析,進(jìn)行個人學(xué)習(xí)提高投資能力。因此投資者的學(xué)習(xí)行為將證券市場乃至宏觀經(jīng)濟(jì)產(chǎn)生深遠(yuǎn)影響,研究學(xué)習(xí)行為對證券市場的影響就具有非常有益的現(xiàn)實(shí)意義。 本文基于行為金融學(xué)理論,充分考慮投資者學(xué)習(xí)類型的異質(zhì)性,結(jié)合證券市場中的不對稱信息現(xiàn)象與投資者對信息來源的信任累積現(xiàn)象,以投資者主體為節(jié)點(diǎn),信息傳播途徑為邊,構(gòu)建擇優(yōu)連接的復(fù)雜信息擴(kuò)散網(wǎng)絡(luò)來模擬投資者學(xué)習(xí)過程。通過分析復(fù)雜信息擴(kuò)散網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu),研究不同學(xué)習(xí)方式和學(xué)習(xí)時間對投資者收益的影響,從而提出證券市場中投資者應(yīng)采取的學(xué)習(xí)類型及其對投資者收益的影響。 對復(fù)雜信息擴(kuò)散網(wǎng)絡(luò)進(jìn)行網(wǎng)絡(luò)分析,該網(wǎng)絡(luò)具有明顯的無標(biāo)度性和較弱的小世界性,屬于社會網(wǎng)絡(luò)。網(wǎng)絡(luò)中節(jié)點(diǎn)數(shù)與信任閾值的改變會影響到網(wǎng)絡(luò)結(jié)構(gòu)的變化,從而影響到投資者收益。在此基礎(chǔ)上得出結(jié)論:采取混合學(xué)習(xí)方式的投資者的學(xué)習(xí)效果最佳,采取社會學(xué)習(xí)方式的投資者學(xué)習(xí)效果最差;學(xué)習(xí)次數(shù)的增加有助于收益從掌握大量資源的hub投資者向普通投資者轉(zhuǎn)移。隨著信任閾值的增大或者隨著網(wǎng)絡(luò)規(guī)模的增大,投資者收益分布圖均呈現(xiàn)出先聚集后分散的現(xiàn)象。 因此,對他人保持合理的信任和適度增大自己的信息網(wǎng)絡(luò)規(guī)模,,能夠提高投資者收益;在保持網(wǎng)絡(luò)結(jié)構(gòu)不變的情況下,通過混合學(xué)習(xí)方式進(jìn)行較長時間學(xué)習(xí),即長時間內(nèi)既關(guān)注公開信息、觀察與學(xué)習(xí)其他投資者的投資策略,又堅(jiān)持自省的投資者將會獲得更高的投資收益。
[Abstract]:With the development of information technology, investors in the stock market between individuals on information interaction and interactive network is becoming more and more complex, this information may come from investors according to their own experience on the analysis of the market environment, the observation of other investors, or to communicate with him. These investors of investment experience share and exchange, the poor investors tend to learn from the strong ability of investors, the ability of the investors will analyze the historical data and related theoretical knowledge based on individual learning ability. So learning to improve the investment behavior of investors will have a profound impact of stock market and macroeconomic impact, research on learning behavior of securities the market will have practical significance very useful.
In this paper, based on the behavioral finance theory, considering the heterogeneity of investors learning types, combined with the information asymmetry phenomenon in the stock market and investors accumulated phenomenon on sources of information to trust investors for the node, transmission of information as edges, constructing complex information diffusion network to simulate the preferential attachment of investors through the analysis of the network structure learning process. The complex information diffusion network, study the influence of different learning methods and learning time for investors, so as to put forward the investors in the stock market should adopt the type of learning and its impact on investment returns.
The network analysis of the complex information diffusion network, the network has small world scale-free and less obvious, belongs to the social network. The number of nodes in the network and trust threshold could be influenced by the change of network structure, which affects the return of investors. On the basis of the conclusion: adopt the hybrid learning approach to investors the best effect of learning, social learning take the way investors learn the difference; learning times increase contributes to benefit from mastering a lot of resources hub investors to ordinary investors transfer. With increased the confidence threshold or increase with the network size, distribution of income investors were first aggregated dispersion phenomenon.
Therefore, to maintain a reasonable trust and properly increase the scale of their network information to others, can improve the return of investors; in keeping the network structure unchanged, a long time study in the mixed way of learning, which is a long time not only pays attention to public information, observation and study other investors, investors will also insist on introspection get a higher return on investment.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:O157.5;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莊新田;閔志鋒;陳師陽;;上海證券市場的復(fù)雜網(wǎng)絡(luò)特性分析[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年07期
2 李季明;張寧;;具有隨機(jī)性的確定性網(wǎng)絡(luò)模型[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2007年02期
3 劉濤,陳忠,陳曉榮;復(fù)雜網(wǎng)絡(luò)理論及其應(yīng)用研究概述[J];系統(tǒng)工程;2005年06期
4 鄒琳;馬超群;劉鈺;崔璨;;基于財(cái)富與信息角度的人工股票市場建模及非線性特征形成機(jī)理[J];系統(tǒng)工程;2010年10期
5 白翠粉;高文勝;丁登偉;;利用小世界網(wǎng)絡(luò)的電力變壓器風(fēng)險(xiǎn)評估方法[J];高電壓技術(shù);2010年04期
6 劉維妮;韓立巖;;基于人工股市模型的投資者仿真研究[J];管理學(xué)報(bào);2007年04期
7 黃瑋強(qiáng);莊新田;姚爽;;基于信息傳播和羊群行為的股票市場微觀模擬研究[J];管理學(xué)報(bào);2010年02期
8 何勝學(xué);潘紅;;考慮庫存的供應(yīng)鏈框架下區(qū)域運(yùn)輸網(wǎng)絡(luò)均衡模型[J];系統(tǒng)工程;2013年05期
9 徐守萍;楊小元;楊群華;;基于聲譽(yù)信息的網(wǎng)絡(luò)銀行信任模型研究[J];南方金融;2013年06期
10 李夏苗;王國明;胡正東;楊波;;城市群交通網(wǎng)絡(luò)層級結(jié)構(gòu)與組團(tuán)結(jié)構(gòu)識別[J];系統(tǒng)工程;2012年05期
本文編號:1607742
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1607742.html