基于遺傳算法的資源約束項(xiàng)目調(diào)度問題優(yōu)化及應(yīng)用研究
[Abstract]:Resource constrained project scheduling problem (RCPSP) is a kind of important scheduling problem. It mainly studies how to arrange the start time and completion time of project activities reasonably under the condition of satisfying project activity timing constraints and resource constraints. To optimize the achievement of a management goal. Such as: the shortest time limit, minimum cost, resource balance, etc. This problem belongs to the NP-hard problem theoretically and has abundant models. Many combinatorial optimization problems are special cases of RCPSP. In addition, RCPSP also widely exists in the construction industry, software industry, manufacturing industry and other industries. Therefore, the study of RCPSP has important theoretical and practical significance. The main contents of this paper are as follows: (1). Aiming at classical RCPSP, this paper combines genetic algorithm with new teaching algorithm, and designs a new intelligent optimization algorithm for solving classical resource constrained project scheduling problem, which is called instructional genetic algorithm (TGA). According to the two-stage search method in the process of teaching algorithm, this algorithm designs a kind of second crossover operation, the first crossover is between the individual of teacher and the individual of student. The second crossover is carried out with a certain cross probability between students and students. The design of the crossover operation enables the instructional genetic algorithm to jump out of the local optimum effectively and obtain a better scheduling scheme. In the experimental part, the classical resource constrained project scheduling problem set in standard database PSPLIB is selected to verify the validity of the algorithm. The results show that it is better than one of the existing algorithms in the existing literature. (2) In actual project scheduling, there is often more than one execution mode for each project activity. Each model represents a combination of resource requirements and corresponding durations, and different durations will have different resource requirements. Therefore, as an extension of classical RCPSP, multi-execution mode resource-constrained project scheduling problem has more practical significance. This paper presents a hybrid genetic algorithm for MRCPSP. In order to improve the local search ability of genetic algorithm, a mutation operation based on neighborhood search is designed to improve the local search ability of genetic algorithm. In the experimental part, the benchmark problem J18 / J20 in the standard database is tested, and the validity of the algorithm is verified. (3). Both the theory and the algorithm should serve the practice and provide practical solutions for the project management problems in modern projects. In order to verify whether the hybrid genetic algorithm proposed in this paper can be applied to practical applications, a case study on the MRCPSP problem is carried out. The results show that the intelligent algorithm not only enriches the solution method of multi-execution mode RCPSP, but also improves the performance of the algorithm. Moreover, it widens the application field of genetic algorithm.
【學(xué)位授予單位】:湖南工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:F282;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋紅星;曹文彬;;基于雙種群蟻群算法的多目標(biāo)資源受限項(xiàng)目調(diào)度問題研究[J];信息系統(tǒng)工程;2010年04期
2 程序;吳澄;;一種復(fù)雜項(xiàng)目調(diào)度問題的混合智能算法[J];計(jì)算機(jī)集成制造系統(tǒng);2006年04期
3 徐進(jìn);費(fèi)少梅;張樹有;施岳定;;自適應(yīng)粒子群求解資源動(dòng)態(tài)分配項(xiàng)目調(diào)度問題[J];計(jì)算機(jī)集成制造系統(tǒng);2011年08期
4 雒興剛;汪定偉;唐加福;;任務(wù)可拆分項(xiàng)目調(diào)度問題[J];東北大學(xué)學(xué)報(bào);2006年09期
5 宗硯;劉瓊;張超勇;朱海平;;考慮資源傳遞時(shí)間的多項(xiàng)目調(diào)度問題[J];計(jì)算機(jī)集成制造系統(tǒng);2011年09期
6 孫曉雅;林焰;;任務(wù)可定點(diǎn)拆分的資源受限項(xiàng)目調(diào)度問題研究[J];微電子學(xué)與計(jì)算機(jī);2012年07期
7 張維存;康凱;;蟻群-粒子群算法求解多模式資源受限項(xiàng)目調(diào)度問題[J];計(jì)算機(jī)工程與應(yīng)用;2007年34期
8 劉敏;代成琴;王宇航;;資源受限的項(xiàng)目調(diào)度問題的求解算法[J];自動(dòng)化技術(shù)與應(yīng)用;2008年06期
9 盧睿;李林瑛;;一種求解反應(yīng)式項(xiàng)目調(diào)度問題的啟發(fā)式方法[J];系統(tǒng)仿真學(xué)報(bào);2011年02期
10 孫曉雅;林焰;;人工蜂群算法求解任務(wù)可拆分項(xiàng)目調(diào)度問題[J];微電子學(xué)與計(jì)算機(jī);2011年11期
相關(guān)會(huì)議論文 前3條
1 丁雪楓;尤建新;;多模式資源受限項(xiàng)目調(diào)度問題的混合優(yōu)化算法研究[A];第十四屆中國(guó)管理科學(xué)學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2012年
2 劉艷秋;張穎;汪定偉;王福利;;基于GA的RCPSP可靠性優(yōu)化方法研究[A];2001年中國(guó)智能自動(dòng)化會(huì)議論文集(下冊(cè))[C];2001年
3 周楷;何正文;;周期性支付的多模式Max-npv項(xiàng)目調(diào)度問題研究[A];中國(guó)企業(yè)運(yùn)籌學(xué)學(xué)術(shù)交流大會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前8條
1 王宏;求解資源受限項(xiàng)目調(diào)度問題算法的研究[D];天津大學(xué);2005年
2 鄧林義;資源受限的項(xiàng)目調(diào)度問題及其應(yīng)用研究[D];大連理工大學(xué);2008年
3 陳衛(wèi)明;動(dòng)態(tài)環(huán)境下產(chǎn)品開發(fā)項(xiàng)目調(diào)度問題及其求解研究[D];華中科技大學(xué);2011年
4 吳兵;柔性資源受限的多模式項(xiàng)目調(diào)度問題研究[D];武漢理工大學(xué);2008年
5 彭武良;面向產(chǎn)品開發(fā)的項(xiàng)目調(diào)度問題及項(xiàng)目管理系統(tǒng)研究[D];東北大學(xué);2008年
6 李詩(shī)嫻;基于凈現(xiàn)值的資源受限型項(xiàng)目調(diào)度問題研究[D];天津大學(xué);2012年
7 賈艷;資源受限項(xiàng)目調(diào)度問題的仿真優(yōu)化方法及其應(yīng)用研究[D];華中科技大學(xué);2012年
8 應(yīng)瑛;不確定資源約束下項(xiàng)目調(diào)度問題研究[D];浙江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李遠(yuǎn)見;幾種改進(jìn)的智能算法及其應(yīng)用[D];安徽師范大學(xué);2015年
2 段向陽(yáng);基于遺傳算法的資源約束項(xiàng)目調(diào)度問題優(yōu)化及應(yīng)用研究[D];湖南工業(yè)大學(xué);2015年
3 張冠群;基于蟻群算法的多模式資源受限項(xiàng)目調(diào)度問題研究[D];湖南大學(xué);2009年
4 傅奧;多目標(biāo)資源受限項(xiàng)目調(diào)度問題蟻群算法研究[D];浙江大學(xué);2008年
5 蒲娟;多目標(biāo)模糊資源受限項(xiàng)目調(diào)度問題研究[D];鄭州大學(xué);2012年
6 薄銀利;基于模塊化外包的項(xiàng)目調(diào)度問題研究[D];蘭州大學(xué);2011年
7 劉志霞;資源受限項(xiàng)目調(diào)度問題及其任務(wù)擾動(dòng)的干擾管理研究[D];沈陽(yáng)工業(yè)大學(xué);2011年
8 陳俊波;考慮施工設(shè)備租賃的項(xiàng)目調(diào)度問題研究[D];華中科技大學(xué);2009年
9 劉雅婷;人力資源受限項(xiàng)目調(diào)度問題研究[D];華中科技大學(xué);2007年
10 王偉;任務(wù)工期不確定的資源受限項(xiàng)目調(diào)度優(yōu)化[D];浙江大學(xué);2010年
,本文編號(hào):2274050
本文鏈接:http://sikaile.net/jingjilunwen/hongguanjingjilunwen/2274050.html