可信性均值-絕對(duì)偏差投資組合優(yōu)化
發(fā)布時(shí)間:2018-09-04 08:46
【摘要】:為了度量金融市場(chǎng)的不確定性,本文引入了模糊變量。假設(shè)資產(chǎn)收益率為模糊數(shù),分別運(yùn)用可信性均值和可信性絕對(duì)偏差度量投資組合的收益與風(fēng)險(xiǎn)。考慮到投資者偏好,分別提出了以收益最大化的均值-絕對(duì)偏差優(yōu)化模型和以風(fēng)險(xiǎn)最小化的優(yōu)化模型。基于可信性理論,將上述模型轉(zhuǎn)化為線性規(guī)劃問題,并運(yùn)用旋轉(zhuǎn)算法求解。通過實(shí)證研究,證明了該算法的有效性,并比較了兩個(gè)模型在實(shí)際投資決策過程中的效率。結(jié)果表明,以收益最大化的均值-絕對(duì)偏差優(yōu)化模型效率優(yōu)于風(fēng)險(xiǎn)最小的優(yōu)化模型。
[Abstract]:In order to measure the uncertainty of financial markets, fuzzy variables are introduced in this paper. Assuming that the return on assets is a fuzzy number, the return and risk of the portfolio are measured by the creditability mean and the absolute deviation of credibility respectively. Considering the preference of investors, the Mean-absolute deviation optimization model and the risk minimization optimization model are proposed respectively. Based on credibility theory, the above model is transformed into linear programming problem and solved by rotation algorithm. The effectiveness of the algorithm is proved by empirical research, and the efficiency of the two models in the process of investment decision is compared. The results show that the efficiency of the mean-absolute deviation optimization model is better than that of the least risk optimization model.
【作者單位】: 武漢理工大學(xué)經(jīng)濟(jì)學(xué)院;武漢科技大學(xué)管理學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(71271161) 國家社科基金資助項(xiàng)目(13BJL0062) 武漢理工大學(xué)自主創(chuàng)新研究基金資助項(xiàng)目(175215003)
【分類號(hào)】:F832.5
本文編號(hào):2221589
[Abstract]:In order to measure the uncertainty of financial markets, fuzzy variables are introduced in this paper. Assuming that the return on assets is a fuzzy number, the return and risk of the portfolio are measured by the creditability mean and the absolute deviation of credibility respectively. Considering the preference of investors, the Mean-absolute deviation optimization model and the risk minimization optimization model are proposed respectively. Based on credibility theory, the above model is transformed into linear programming problem and solved by rotation algorithm. The effectiveness of the algorithm is proved by empirical research, and the efficiency of the two models in the process of investment decision is compared. The results show that the efficiency of the mean-absolute deviation optimization model is better than that of the least risk optimization model.
【作者單位】: 武漢理工大學(xué)經(jīng)濟(jì)學(xué)院;武漢科技大學(xué)管理學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(71271161) 國家社科基金資助項(xiàng)目(13BJL0062) 武漢理工大學(xué)自主創(chuàng)新研究基金資助項(xiàng)目(175215003)
【分類號(hào)】:F832.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 連仁源;許若寧;;基于交易費(fèi)用和絕對(duì)偏差的證券投資組合模型[J];邵陽學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年02期
2 張鵬;曾永泉;;均值-半絕對(duì)偏差投資組合優(yōu)化研究[J];科學(xué)技術(shù)與工程;2008年01期
3 陳煒;楊玲;;具有交易費(fèi)用的均值—極大極小半絕對(duì)偏差投資組合模型[J];首都經(jīng)濟(jì)貿(mào)易大學(xué)學(xué)報(bào);2009年06期
4 張鵬;;多階段均值-半絕對(duì)偏差模糊投資組合優(yōu)化研究[J];模糊系統(tǒng)與數(shù)學(xué);2013年01期
5 莊新田;劉洋;池麗旭;;基于模糊時(shí)間序列的投資組合折中規(guī)劃[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
6 ;[J];;年期
相關(guān)碩士學(xué)位論文 前2條
1 孟祥環(huán);基于多目標(biāo)規(guī)劃下的風(fēng)險(xiǎn)組合投資模型的應(yīng)用研究[D];武漢科技大學(xué);2013年
2 隋意;投資組合的若干數(shù)學(xué)模型[D];吉林大學(xué);2009年
,本文編號(hào):2221589
本文鏈接:http://sikaile.net/jingjilunwen/hongguanjingjilunwen/2221589.html
最近更新
教材專著