基于主成分分析與TOPSIS模型相結(jié)合的函數(shù)型產(chǎn)品質(zhì)量特性的優(yōu)化方法研究
發(fā)布時間:2018-07-29 09:47
【摘要】:基于穩(wěn)健參數(shù)設(shè)計理論提出了一種將主成分分析法與逼近理想點決策方法(TOPSIS)相結(jié)合的非線性輪廓圖(Non-Linear profile)優(yōu)化方法。首先利用兩步建模法擬合響應(yīng)模型,計算模型參數(shù)的滿意度函數(shù)值,其次對模型參數(shù)的滿意度函數(shù)值進行主成分分析,消除參數(shù)之間的相關(guān)性,并構(gòu)建模型參數(shù)變異模式圖,確定選定主成分的優(yōu)化方向。最后利用TOPSIS模型求得選定主成分的最優(yōu)貼近度(OPI),將其作為最終的優(yōu)化指標(biāo)。傳統(tǒng)的優(yōu)化方法都忽略了模型參數(shù)之間的相關(guān)性及優(yōu)化過程的穩(wěn)健性,并且需要復(fù)雜的數(shù)學(xué)計算,而本文所提方法可以有效解決這些問題。最后利用該方法對文獻中的實例進行了分析研究,證明本文方法切實可行,優(yōu)化結(jié)果令人滿意。
[Abstract]:Based on the robust parameter design theory, a nonlinear contour map (Non-Linear profile) optimization method is proposed, which combines principal component analysis (PCA) with approach to ideal point decision method (TOPSIS). First, the response model is fitted with two-step modeling method, and the satisfaction function value of model parameters is calculated. Secondly, the principal component analysis of satisfaction function value of model parameters is carried out to eliminate the correlation between parameters, and the model parameter variation pattern diagram is constructed. Determine the optimization direction of the selected principal components. Finally, the optimal closeness degree (OPI), of selected principal components is obtained by using TOPSIS model as the final optimization index. The traditional optimization methods ignore the correlation between the model parameters and the robustness of the optimization process, and need complex mathematical calculation. The proposed method can effectively solve these problems. Finally, the method is used to analyze and study the examples in the literature, and it is proved that the proposed method is feasible and the optimization results are satisfactory.
【作者單位】: 天津大學(xué)管理與經(jīng)濟學(xué)部;
【基金】:國家自然科學(xué)基金杰出青年基金資助項目(71225006)
【分類號】:F273.2;F224
[Abstract]:Based on the robust parameter design theory, a nonlinear contour map (Non-Linear profile) optimization method is proposed, which combines principal component analysis (PCA) with approach to ideal point decision method (TOPSIS). First, the response model is fitted with two-step modeling method, and the satisfaction function value of model parameters is calculated. Secondly, the principal component analysis of satisfaction function value of model parameters is carried out to eliminate the correlation between parameters, and the model parameter variation pattern diagram is constructed. Determine the optimization direction of the selected principal components. Finally, the optimal closeness degree (OPI), of selected principal components is obtained by using TOPSIS model as the final optimization index. The traditional optimization methods ignore the correlation between the model parameters and the robustness of the optimization process, and need complex mathematical calculation. The proposed method can effectively solve these problems. Finally, the method is used to analyze and study the examples in the literature, and it is proved that the proposed method is feasible and the optimization results are satisfactory.
【作者單位】: 天津大學(xué)管理與經(jīng)濟學(xué)部;
【基金】:國家自然科學(xué)基金杰出青年基金資助項目(71225006)
【分類號】:F273.2;F224
【參考文獻】
相關(guān)期刊論文 前2條
1 許靜;何楨;;基于逼近理想點的渴求函數(shù)法在Linear-Profile優(yōu)化中的應(yīng)用[J];工業(yè)工程與管理;2015年05期
2 何楨;張迎冬;;基于主成分分析的多響應(yīng)穩(wěn)健性優(yōu)化方法研究[J];工業(yè)工程與管理;2012年06期
【共引文獻】
相關(guān)期刊論文 前4條
1 許靜;何楨;袁榮;陳U喼,
本文編號:2152288
本文鏈接:http://sikaile.net/jingjilunwen/hongguanjingjilunwen/2152288.html
最近更新
教材專著