PFCM聚類算法的可視化實現(xiàn)與應(yīng)用研究
[Abstract]:The information level of contemporary society is highly developed. Many traditional industries have joined the tide of digitization and networking. How to organize and use the data, how to mine and extract the information and rules of commercial value from the sea of data, It has become an urgent problem. Therefore, data mining has become a very important research field in information technology. As an important method of data mining, clustering analysis is widely used in various fields. Clustering analysis refers to the study and processing of objects by mathematical methods, and the reasonable classification of objects. Among them, C-means clustering algorithm is a very widely used clustering algorithm. This paper mainly studies the visualization realization of Cmean clustering algorithm, including hard Cmean clustering, fuzzy Cmean clustering, possibility Cmean algorithm and possibility fuzzy Cmean clustering algorithm. And how to apply these C-means clustering algorithms to the real estate market analysis. In this paper, the background of the research and the development situation at home and abroad are introduced, the purpose and significance of this study are expounded, and the fuzzy set and its operation principle are given, which is ready for the introduction of fuzzy clustering and the possibility of fuzzy C-means clustering algorithm. In this paper, the principle and core steps of four C-means clustering algorithms are discussed in detail, and the experimental data sets are used to verify the above algorithms. The clustering performance and accuracy of these algorithms are analyzed and discussed. The application scope, advantages and disadvantages of each algorithm are summarized. Finally, this paper gives some examples of the application of the C- mean clustering algorithm in the residential market analysis of 35 large and medium-sized cities in China, and gives a practical analysis and conclusion on the clustering results of the real estate data.
【學位授予單位】:中國地質(zhì)大學(北京)
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TP311.13
【參考文獻】
相關(guān)期刊論文 前9條
1 高新波,裴繼紅,謝維信;模糊c-均值聚類算法中加權(quán)指數(shù)m的研究[J];電子學報;2000年04期
2 李潔;高新波;焦李成;;基于特征加權(quán)的模糊聚類新算法[J];電子學報;2006年01期
3 胡雅婷;左春檉;曲福恒;楊洋;;多尺度可能性聚類算法[J];長春理工大學學報(自然科學版);2010年04期
4 普運偉;金煒東;朱明;胡來招;;核模糊C均值算法的聚類有效性研究[J];計算機科學;2007年02期
5 左浩;李雯;;改進的PCM聚類算法在圖像分割中的應(yīng)用[J];計算機與數(shù)字工程;2010年11期
6 孫曉霞;劉曉霞;謝倩茹;;模糊C-均值(FCM)聚類算法的實現(xiàn)[J];計算機應(yīng)用與軟件;2008年03期
7 高新波,謝維信;模糊聚類理論發(fā)展及應(yīng)用的研究進展[J];科學通報;1999年21期
8 朱劍英;應(yīng)用模糊數(shù)學方法的若干關(guān)鍵問題及處理方法[J];模糊系統(tǒng)與數(shù)學;1992年02期
9 辛園園;楊子江;;35個大中城市住宅市場差異研究[J];特區(qū)經(jīng)濟;2011年10期
相關(guān)博士學位論文 前2條
1 胡雅婷;可能性聚類方法研究及應(yīng)用[D];吉林大學;2012年
2 曲福恒;一類模糊聚類算法研究及其應(yīng)用[D];吉林大學;2009年
相關(guān)碩士學位論文 前1條
1 周巧萍;可能性聚類算法的研究[D];中北大學;2008年
本文編號:2420287
本文鏈接:http://sikaile.net/jingjilunwen/fangdichanjingjilunwen/2420287.html