天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

城市住房價格PSO-LSSVR預(yù)測模型研究

發(fā)布時間:2018-04-03 23:55

  本文選題:房地產(chǎn)市場 切入點(diǎn):住房成交量 出處:《重慶大學(xué)》2014年博士論文


【摘要】:近年來,房地產(chǎn)行業(yè)的迅速蓬勃發(fā)展是大家有目共睹的。而城市商品住房作為其重要組成部分的也呈現(xiàn)了穩(wěn)步增長的趨勢。在住房產(chǎn)業(yè)快速發(fā)展的過程中,住房價格作為重要的經(jīng)濟(jì)杠桿對住房產(chǎn)業(yè)化與商品化起著重要的推動作用,住房價格也成為政府、居民和廣大房地產(chǎn)開發(fā)商普遍關(guān)注的焦點(diǎn)。尤其是近年來,持續(xù)走高的城市住房價格給城市居民以及整個社會的經(jīng)濟(jì)發(fā)展都帶來了很大的負(fù)面影響。與此同時,政府宏觀調(diào)控措施雖然取得了一定的成效,但是效果不甚明顯;诖,本文將展開對城市住房價格預(yù)測模型的研究。通過建立價格預(yù)測模型,可以掌握房地產(chǎn)價格走勢,合理準(zhǔn)確評估預(yù)測房價,進(jìn)而可以對房地產(chǎn)市場的發(fā)展展開分析,這對確保我國住房市場穩(wěn)定健康發(fā)展有著重要的作用。本文的主要研究內(nèi)容如下: ①本文首先梳理了國內(nèi)外關(guān)于住房價格預(yù)測的相關(guān)研究,并基于已有的研究提出了基于粒子群算法的最小二乘支持向量機(jī)(PSO-LSSVR模型)的住房價格預(yù)測方法。最小二乘支持向量機(jī)在建模數(shù)據(jù)過程中能很好彌補(bǔ)人工神經(jīng)網(wǎng)絡(luò)模型和支持向量機(jī)的諸多不足,而且粒子群算法能迅速快捷地對參數(shù)進(jìn)行優(yōu)化,具有精度高、速度快等優(yōu)點(diǎn)。 ②通過確定房地產(chǎn)度量指標(biāo)體系和等級劃分標(biāo)準(zhǔn),詳細(xì)介紹城市住房價格PSO-LSSVR預(yù)測模型的運(yùn)作流程。并介紹基于PSO-LSSVR模型與模糊灰色理論的房地產(chǎn)市場預(yù)測系統(tǒng)架構(gòu),通過預(yù)測系統(tǒng)構(gòu)架可以使預(yù)測模型更好的發(fā)揮作用。 ③以北京市為例展開預(yù)測模型的實(shí)證分析。通過構(gòu)建相應(yīng)的PSO-LSSVR住房價格和成交量預(yù)測模型,對北京市房地產(chǎn)市場發(fā)展健康狀況進(jìn)行評估。實(shí)證分析表明基于粒子群優(yōu)化最小二乘支持向量回歸預(yù)測模型優(yōu)于傳統(tǒng)的支持向量回歸模型,也證明了PSO-LSSVR預(yù)測模型用于城市住房價格預(yù)測的有效性。 ④在住房價格、住房成交量的PSO-LSSVR預(yù)測模型和基于模糊灰色理論的房地產(chǎn)市場評估模型基礎(chǔ)上給出了整個房地產(chǎn)市場預(yù)測系統(tǒng)的實(shí)現(xiàn)過程,并詳細(xì)介紹系統(tǒng)的軟件實(shí)現(xiàn)過程。 ⑤總結(jié)本研究的研究成果并對未來的研究提出建議。 本文提出城市住房價格PSO-LSSVR預(yù)測模型,并結(jié)合模糊灰色理論提出一整套房地產(chǎn)市場預(yù)測與評估方法,對于房地產(chǎn)市場預(yù)測與評估有著非常重要的價值。通過該研究既可以為各國家及城市政府管理部門制定房地產(chǎn)調(diào)控政策,保證房地產(chǎn)經(jīng)濟(jì)健康、持續(xù)、穩(wěn)定的發(fā)展提供重要的手段和決策依據(jù),,可以為企業(yè)的投資決策提供更多的幫助;也可以更進(jìn)一步完善我國房地產(chǎn)研究的理論系統(tǒng),具有重要的理論意義和實(shí)踐意義。
[Abstract]:In recent years, the rapid and vigorous development of the real estate industry is obvious to all.As an important part of urban commercial housing, it also shows a steady growth trend.In the process of rapid development of housing industry, housing price, as an important economic lever, plays an important role in promoting housing industrialization and commercialization. Housing price has become the focus of the government, residents and real estate developers.Especially in recent years, rising urban housing prices have brought great negative effects to urban residents and the economic development of the whole society.At the same time, although the government macro-control measures have achieved some results, but the effect is not obvious.Based on this, this paper will carry out a study on the urban housing price prediction model.Through the establishment of price forecasting model, we can grasp the trend of real estate price, reasonably and accurately evaluate and forecast the housing price, and then analyze the development of real estate market, which plays an important role in ensuring the stable and healthy development of our country's housing market.The main contents of this paper are as follows:Firstly, this paper reviews the research on housing price prediction at home and abroad, and proposes a Particle Swarm Optimization (PSO) based LS-LSSVR model for housing price prediction.The least square support vector machine (LS-SVM) can make up for many shortcomings of artificial neural network model and support vector machine in the process of modeling data, and particle swarm optimization algorithm can quickly and quickly optimize the parameters, which has the advantages of high precision and fast speed.(2) by determining the real estate measurement index system and grade classification standard, the operation process of urban housing price PSO-LSSVR forecasting model is introduced in detail.The structure of real estate market forecasting system based on PSO-LSSVR model and fuzzy grey theory is introduced.3 taking Beijing as an example, the empirical analysis of forecasting model is carried out.By constructing the corresponding PSO-LSSVR housing price and volume forecasting model, this paper evaluates the health of the real estate market in Beijing.The empirical analysis shows that the least square support vector regression forecasting model based on particle swarm optimization is superior to the traditional support vector regression model, and it also proves the validity of PSO-LSSVR forecasting model in urban housing price forecasting.4. Based on the PSO-LSSVR forecasting model of housing price, housing transaction volume and the real estate market evaluation model based on fuzzy grey theory, the realization process of the whole real estate market forecasting system is given, and the software realization process of the system is introduced in detail.5 summarize the research results of this study and put forward suggestions for future research.This paper puts forward the PSO-LSSVR forecasting model of urban housing price, and puts forward a set of real estate market forecasting and evaluation methods combined with fuzzy grey theory, which has very important value for real estate market prediction and evaluation.Through the research, it can provide important means and decision basis for the governments of various countries and cities to formulate the real estate regulation and control policies and ensure the healthy, sustainable and stable development of the real estate economy.It can provide more help for the investment decision of enterprises and perfect the theoretical system of real estate research in our country, which has important theoretical and practical significance.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:F299.23

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 邱啟榮;于婷;;基于主成分分析的BP神經(jīng)網(wǎng)絡(luò)對房價的預(yù)測研究[J];湖南文理學(xué)院學(xué)報(自然科學(xué)版);2011年03期

2 歐陽建濤;非線性灰色預(yù)測模型在房地產(chǎn)投資價格中的應(yīng)用[J];工業(yè)技術(shù)經(jīng)濟(jì);2005年05期

3 郭峰;;房地產(chǎn)預(yù)警系統(tǒng)研究綜述[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2005年04期

4 郭峰;;綜合預(yù)測方法在房地產(chǎn)預(yù)警系統(tǒng)中的實(shí)證研究[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2007年05期

5 梁坤;聶會星;徐樅巍;;基于支持向量機(jī)的北京市房地產(chǎn)價格指數(shù)預(yù)測[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2011年04期

6 周云龍;何小斌;;基于PSO-LSSVR的環(huán)狀流截面含氣率軟測量方法[J];化工自動化及儀表;2010年01期

7 余凱;;基于主成分分析和灰色預(yù)測方法的房地產(chǎn)預(yù)警體系研究[J];哈爾濱商業(yè)大學(xué)學(xué)報(社會科學(xué)版);2008年06期

8 李龍,張英,張達(dá),尚通亮,王健;淺析影響我國房地產(chǎn)價格上漲的因素[J];哈爾濱商業(yè)大學(xué)學(xué)報(自然科學(xué)版);2004年04期

9 蔡曉春;伍雋;;基于灰色線性回歸組合模型的長沙、武漢房地產(chǎn)投資預(yù)測研究[J];經(jīng)濟(jì)數(shù)學(xué);2008年03期

10 章偉;;粗糙集BP神經(jīng)網(wǎng)絡(luò)在房地產(chǎn)價格預(yù)測中的應(yīng)用[J];計算機(jī)仿真;2011年07期

相關(guān)博士學(xué)位論文 前4條

1 余建源;中國房地產(chǎn)市場調(diào)控研究[D];上海社會科學(xué)院;2009年

2 王藝;中國特色的房地產(chǎn)市場與政府管制研究[D];武漢大學(xué);2010年

3 郭貴海;城市住宅價格演變規(guī)律空間影響因子相關(guān)性研究[D];中國礦業(yè)大學(xué)(北京);2012年

4 吳天君;基于區(qū)域特征的城市住宅價格模型研究[D];解放軍信息工程大學(xué);2012年



本文編號:1707460

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/fangdichanjingjilunwen/1707460.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶43adf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
成人午夜在线视频观看| 成人国产激情在线视频| 国产精品一区二区成人在线| 国产成人午夜福利片片| 日韩性生活片免费观看| 日本欧美一区二区三区在线播| 国产三级不卡在线观看视频| 伊人天堂午夜精品草草网| 国产精品成人免费精品自在线观看| 人妻一区二区三区多毛女| 欧美日韩综合在线精品| 久热久热精品视频在线观看| 国产又粗又猛又爽又黄| 麻豆看片麻豆免费视频| 国产又粗又硬又大又爽的视频| 欧美日韩中黄片免费看| 翘臀少妇成人一区二区| 亚洲一区二区亚洲日本| 国产av熟女一区二区三区四区 | 爽到高潮嗷嗷叫之在现观看| 中日韩美女黄色一级片| 国产又粗又爽又猛又黄的| 扒开腿狂躁女人爽出白浆av | 亚洲中文字幕三区四区| 午夜激情视频一区二区| 丰满人妻一二区二区三区av| 五月天丁香亚洲综合网| 色一情一乱一区二区三区码| 熟女一区二区三区国产| 伊人国产精选免费观看在线视频| 久七久精品视频黄色的| 国产免费操美女逼视频| 亚洲欧洲一区二区中文字幕| 亚洲av专区在线观看| 青青免费操手机在线视频| 日韩午夜福利高清在线观看| 日本熟女中文字幕一区| 日本午夜免费观看视频| 亚洲av熟女一区二区三区蜜桃 | 欧美尤物在线视频91| 日本精品中文字幕在线视频|