基于BP神經(jīng)網(wǎng)絡(luò)的我國(guó)房地產(chǎn)市場(chǎng)風(fēng)險(xiǎn)評(píng)價(jià)研究
本文關(guān)鍵詞: 房地產(chǎn)市場(chǎng) 風(fēng)險(xiǎn)評(píng)價(jià) BP神經(jīng)網(wǎng)絡(luò) 出處:《湘潭大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:在我國(guó),,房地產(chǎn)業(yè)在國(guó)民經(jīng)濟(jì)中占有舉足輕重的地位,不僅關(guān)系著人民的生活水平和住房保障,同時(shí)也影響著每個(gè)地區(qū)乃至整個(gè)國(guó)家的經(jīng)濟(jì)體系穩(wěn)定程度。近些年來(lái),由我國(guó)房地產(chǎn)市場(chǎng)出現(xiàn)的種種現(xiàn)象反應(yīng),我國(guó)房地產(chǎn)市場(chǎng)存在著不容忽視的風(fēng)險(xiǎn)。市場(chǎng)上也頻繁出現(xiàn)一些關(guān)于房地產(chǎn)泡沫過(guò)高,房地產(chǎn)風(fēng)險(xiǎn)過(guò)大的言論。然而房地產(chǎn)市場(chǎng)自身所具有的非線性等特征,使得對(duì)其風(fēng)險(xiǎn)程度的評(píng)價(jià)變得相對(duì)困難。本文正是在此背景之下,針對(duì)房地產(chǎn)的非線性特征,構(gòu)建了完整、科學(xué)的評(píng)價(jià)指標(biāo)體系,通過(guò)神經(jīng)網(wǎng)絡(luò)模型來(lái)準(zhǔn)確的評(píng)估我國(guó)房地產(chǎn)市場(chǎng)存在的風(fēng)險(xiǎn)程度。 本文根據(jù)房地產(chǎn)市場(chǎng)的發(fā)展度以及和諧度一共12個(gè)指標(biāo)構(gòu)建了我國(guó)房地產(chǎn)市場(chǎng)的評(píng)價(jià)指標(biāo)體系,并通過(guò)BP神經(jīng)網(wǎng)絡(luò)模型針對(duì)我國(guó)31個(gè)省及直轄市的2001年至2012年的房地產(chǎn)樣本數(shù)據(jù)進(jìn)行建模并預(yù)測(cè)分析。借助了Matlab7.0中人工神經(jīng)網(wǎng)絡(luò)模塊,實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)模型的建立,并經(jīng)過(guò)檢測(cè),發(fā)現(xiàn)模型具有良好的泛化能力。最后利用建立的模型對(duì)我國(guó)31個(gè)省及直轄市2013年的房地產(chǎn)市場(chǎng)風(fēng)險(xiǎn)情況進(jìn)行了預(yù)測(cè)分析,得出我國(guó)房地產(chǎn)風(fēng)險(xiǎn)程度及分布情況:(1)我國(guó)房地產(chǎn)市場(chǎng)整體風(fēng)險(xiǎn)較大,31個(gè)省及直轄市中只有5個(gè)處于風(fēng)險(xiǎn)較小的情況;(2)我國(guó)房地產(chǎn)市場(chǎng)風(fēng)險(xiǎn)從東部沿海發(fā)達(dá)地區(qū)由大到小向西部欠發(fā)達(dá)地區(qū)分布。最后,針對(duì)我國(guó)房地產(chǎn)市場(chǎng)風(fēng)險(xiǎn)狀況,從經(jīng)濟(jì)手段以及法律手段兩個(gè)方面給出了對(duì)策建議。 本文的主要?jiǎng)?chuàng)新在于:根據(jù)房地產(chǎn)市場(chǎng)的發(fā)展度和和諧度構(gòu)建了全面、合理的房地產(chǎn)市場(chǎng)風(fēng)險(xiǎn)評(píng)價(jià)指標(biāo)體系;同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)模型從整個(gè)國(guó)家層面分省市研究了我國(guó)房地產(chǎn)市場(chǎng)的風(fēng)險(xiǎn)程度及分布情況并做出了評(píng)價(jià)分析。
[Abstract]:In our country, the real estate industry plays an important role in the national economy, which not only concerns the people's living standard and housing security, but also affects the stability of the economic system in every region and even the whole country in recent years. As a result of various phenomena in the real estate market of our country, the real estate market in our country has some risks that can not be ignored. However, it is relatively difficult to evaluate the degree of risk of real estate market because of its nonlinear characteristics. In this context, this paper aims at the nonlinear characteristics of real estate. A complete and scientific evaluation index system is constructed, and the risk degree of real estate market in our country is evaluated accurately by neural network model. According to the development degree and harmony degree of the real estate market, this paper constructs the evaluation index system of China's real estate market. The BP neural network model is used to model and predict the real estate sample data from 2001 to 2012 in 31 provinces and municipalities of China. With the help of artificial neural network module in Matlab7.0, the establishment of BP neural network model is realized. After testing, it is found that the model has good generalization ability. Finally, the risk of real estate market in 31 provinces and municipalities in China in 2013 is forecasted and analyzed by using the established model. Get the real estate risk degree and distribution of our country: 1) our country real estate market overall risk is bigger, only 5 of 31 provinces and municipalities directly under the Central Government are in the condition of relatively small risk.) the real estate market risk of our country is from the developed area of the east coast. Distributed from large to small to underdeveloped areas in the west. Finally, In view of the situation of real estate market risk in China, the countermeasures and suggestions are put forward from two aspects: economic means and legal means. The main innovation of this paper lies in: according to the development degree and harmony degree of real estate market, a comprehensive and reasonable evaluation index system of real estate market risk is constructed; At the same time, BP neural network model is used to study the risk degree and distribution of real estate market in China from the whole national level.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP183;F299.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁運(yùn)斌;我國(guó)房地產(chǎn)業(yè)景氣指標(biāo)設(shè)置與預(yù)警預(yù)報(bào)系統(tǒng)建設(shè)的基本構(gòu)想[J];北京房地產(chǎn);1995年11期
2 周京奎;信息不對(duì)稱(chēng)、信念與金融支持過(guò)度——房地產(chǎn)泡沫形成的一個(gè)博弈論分析[J];財(cái)貿(mào)經(jīng)濟(jì);2005年08期
3 李斌;房地產(chǎn)市場(chǎng)預(yù)報(bào)預(yù)警系統(tǒng)建立過(guò)程中的誤區(qū)及應(yīng)注意的要點(diǎn)[J];中國(guó)房地產(chǎn);2004年02期
4 賈花萍;盛仲飆;;灰色理論在房地產(chǎn)投資項(xiàng)目風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用[J];電子設(shè)計(jì)工程;2012年18期
5 劉琳,黃英,劉洪玉;房地產(chǎn)泡沫測(cè)度系數(shù)研究[J];價(jià)格理論與實(shí)踐;2003年03期
6 孟強(qiáng);;基于層次分析法的房地產(chǎn)項(xiàng)目風(fēng)險(xiǎn)管理[J];商業(yè)經(jīng)濟(jì);2008年06期
7 孟強(qiáng);;基于BP神經(jīng)網(wǎng)絡(luò)的房地產(chǎn)項(xiàng)目風(fēng)險(xiǎn)評(píng)價(jià)研究[J];商業(yè)經(jīng)濟(jì);2009年14期
8 肖澤群;程德理;肖萬(wàn)春;;基于核主成分子的我國(guó)房地產(chǎn)風(fēng)險(xiǎn)分析[J];經(jīng)濟(jì)研究導(dǎo)刊;2009年35期
9 葉艷兵,丁烈云;房地產(chǎn)預(yù)警指標(biāo)體系設(shè)計(jì)研究[J];基建優(yōu)化;2001年03期
10 劉瀟;;房地產(chǎn)投資風(fēng)險(xiǎn)的模糊綜合評(píng)價(jià)[J];金融經(jīng)濟(jì);2008年02期
本文編號(hào):1507855
本文鏈接:http://sikaile.net/jingjilunwen/fangdichanjingjilunwen/1507855.html